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Abstract

Visual methods were used for pre-cluster assessment and useful cluster partitions.
Existing visual methods, such as visual assessment tendency (VAT), spectral VAT
(SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similar-
ity VAT (MVS-VAT), effectively assess the knowledge about the number of clusters
or cluster tendency. Tweets data partitioning is underlying the problem of social data
clustering. Cosine-based visual methods succeeded widely in text data clustering.
Thus, cVAT and MVS-VAT are the best suited methods for the derivation of social
data clusters. However, MVS-VAT is facing the problem of scalability issues in
terms of computational time and memory allocation. Therefore, this paper presents
the sampling-based MVS-VAT computing technique to overcome the scalability
problem in social data clustering to select sample inter-cluster viewpoints. Stand-
ard health keywords and benchmarked TREC2017 and TREC2018 health keywords
are taken to extract health tweets in the experiment for illustrating the performance
comparison between existing and proposed visual methods.

Keywords Cluster tendency - Social data clustering - Scalability - Visual methods -
Feature extraction

P< M. Suleman Basha
suleman.ndl@gmail.com

S. K. Mouleeswaran
mouleeswaran-cse @dsu.edu.in

K. Rajendra Prasad
krprgm @gmail.com
Department of Computer Science and Engineering, Dayananda Sagar University, Bangalore,

India

Department of Computer Science and Engineering, Rajeev Gandhi Memorial College
of Engineering and Technology, Nandyal, India

Published online: 12 January 2021 @ Springer


http://orcid.org/0000-0002-0519-089X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03618-6&domain=pdf

M. S. Basha et al.

1 Introduction

Text clustering [1] derives the clusters based on similarity features of text docu-
ments. It is an emerging problem in many applications, such as social data clus-
tering [2], information retrieval systems, media monitoring [3], feedback anal-
ysis, and opinion mining [4]. This paper attempts the problem of social data
clustering for sensitive health data analysis [5]. Twitter is an excellent resource
for obtaining social data [6]; it facilitates social users for sharing knowledge
on health. Health tweets are extracted and modeled for the feature extraction of
tweets in the form of bag-of-words. Topic models [7], ‘non-matrix factorization
(NMF)’ [8], ‘latent Dirichlet allocation (LDA)’ [9], ‘latent semantic indexing
(LSI)’ [10], and ‘probabilistic LSI (PLSI)’ [11] are the most popular in extrac-
tion of tweets features. With the topic models, the tweets’ features are extracted
concerning topics instead of terms for avoiding the data sparsity problem [1]
[12]. State-of-the-art visual methods, VAT [13], SpecVAT [14], cVAT [15], and
MVS-VAT [16], performed excellently for the extraction of cluster tendency,
i.e., it determines the pre-clusters for the documents in visual form. The VAT
was introduced to determine the clusters numbering with a count of extracted
dark-black-colored squares in the respective images of visual methods, and the
sample study of VAT is illustrated in Fig. 1 [13].

Dissimilarity features of documents are derived initially in dissimilarity matrix
‘DM’ and then find the re-ordered dissimilarity matrix (RDM [17]. Image of RDM
is visualized, and it is known as a VAT image. VAT image showed the visual clusters
in square-shaped dark-colored blocks. Each square-shaped dark-colored block of the
VAT image indicates the separate cluster. Another method, Spec VAT, uses the spec-
tral features of data objects in the dissimilarity features computation. Cosine-based
similarity (or dissimilarity) values are computed in cVAT, in which the object’s sim-
ilarity measured with direction and magnitude of document vectors; thus, it is more
accurate and shows the more quality of visual clusters. It uses the single-viewpoint
approach. MVS-VAT uses the multi-viewpoints, and it conclusively determines the
cluster tendency [18] for the set of tweets documents in a better way than the ear-
lier stated visual methods. Finding the dissimilarity features of N tweets with (N-2)
multi-viewpoints demands high computational time and more memory allocation.
Here, dissimilarity was derived from any two tweets concerning remaining (N-2)
viewpoints. Therefore, a sampling-based MVS-VAT method is proposed to address
the scalability problems of social data clustering in terms of computational time and
memory requirements, and its critical steps are shown in Fig. 2.

Figure 3 illustrates multi-viewpoints cosine-based similarity computation of
the five tweets documents (here N=35), and corresponding documents are defined
in projected space with five viewpoints, namely v1,v2, v3, v4, and v5. For exam-
ple, similarity features between two documents (viewpoints vl and v2) are com-
puted concerning the other three multi-viewpoints (v3, v4, and v5), unlike a sin-
gle viewpoint in traditional cosine metric.

The following cases are observed as follows:
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0.00 0.73 019 0.71 0.16
0.73 0.00 059 0.12 0.78
DM = |0.19 0.59 0.00 0.55 0.19
0.71 0.120.55 0.00 0.74
0.16 0.78 0.19 0.74 0.0

(a) Distance
(or Dissimilarity) Matrix of Dataset — DM; and
its corresponding image (prior to VAT)

0.00 012 0.59 0.73 0.787
0.12 0.00 059 0.71 0.74
RDM =|0.59 0.55 0.00 0.19 0.19
0.73 0.710.19 000 0.16
0.78 0.74 0.19 0.16 0.00-

(b)
fter applying VAT, Re-ordered dissimilarity
matrix (RDM), and its image ‘I’

Fig. 1 Dissimilarity, re-ordered dissimilarity matrix, and visual images in VAT [13]

Fig.2 Sampling-based view-
points in similarity features
computation

i. Cosine(vl,v2) with respect to v3 (with an angle M) is S1.
ii. Cosine(v1,v2) with respect to v4 (with an angle N) is S2.
iii. Cosine(v1,v2) with respect to v5 (with an angle Q) is S3.
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Fig. 3 Key steps of the proposed I/P: Tweets Data
method ’

Use Topic Models for Modelling
the Tweets

Tweets Feature
Extraction

Apply Min-Max Sampling
Procedure on Tweets Feature

Inter-cluster sample
tweets

Apply MVS Measure with inter-
cluster viewpoints

Tweets Dissimilarity
Matrix

Apply VAT to determine the
Crisp Partitions of VAT Image

O/P: Discover the clusters from
the result of crisp partition

Highlights of the contributions for the described work of the paper are presented
as follows:

1. The pre-cluster assessment is performed for the tweet dataset with the selection
of the best sample viewpoints.

2. The sampling strategy is developed to select sample viewpoints rather than the
selection of (N-2) viewpoints.

3. Cluster tendency is determined by developing the sampling-based visual method
within minimum computational time.

4. The crisp partitions are derived for determining the cluster labels of health tweets.

5 The clusters are visualized with square-shaped black-colored blocks, which excel-
lently determines the clusters of health tweets.
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The crisp partitions have shown the aligned k-partitions of the visual image, and
it is derived from the detection of obtained square-shaped blocks (dark color) along
the diagonal in the visual image. The diagonal’s square edginess showed the crisp
partitions, and it is computed by finding the difference of pixel intensities between
diagonal and non-diagonal square-shaped blocks.

The remaining sections are described as the following sequences. Related work is
neatly presented in Sect. 2; the paper’s proposed work is illustrated in Sect. 3. The
essential part of the experimental work and its performance analysis is discussed in
Sect. 4. Finally, the conclusion and scope of the work are described in Sect. 5.

2 Related work

Social data clustering involves two key steps: pre-clusters assessment and data parti-
tions. Twitter [19] is a great social platform and provides social users an opportunity
to share or exchange views through tweets form, for which social data clusters are
important in related significant sectors. The clustering of social tweets is the current
era of research in health domain applications. Health emergence needs to automate
the social health data issues for finding high sentiment analysis [20]. For these rea-
sons, many pre-cluster assessment methods are surveyed [14], and it was found that
visual methods are recognized as the best choice for the smooth finding of clus-
ter tendency. Bezdek et al. proposed the VAT [13], SpecVAT [14], improved VAT
(iVAT) [21], and ClusiVAT [22] methods for the better assessment of clusters—this
is observed in the respective state-of-the-art algorithms. VAT’s basic approach is
to initially find the dissimilarity features among the data objects using the Euclid-
ean distance metric. Dissimilarity features are re-ordered in the resulting matrix
‘re-ordered dissimilarity matrix (RDM).” An algorithmic approach of VAT [13] is
shown as follows (Algorithm 1).

@ Springer



M. S. Basha et al.

Algorithm 1:VAT (int dissM[ ][ ],int n)
Step1:

Let IV={};JV={0,1,.....n-1}
Determine max of dissM[ ] [ ], and its index
cell is (i,))
P(0)=i; IV={i},JV=IV-{IV};
Step2:
for (s=1;s<n;s++)
{
Find(i,j) from min {dissM[i][j], where
i€1V,je{lV}}
IV={IV}iU{j}; IV={V}-{IV};
P(s)=j;
}
Step3:
/* Reordered Dissimilarity MatrixComutation®/
for(i=0;i<n;i++)
for(j=0;j<n;j++)
RDM=dissM(P[i],P[j]);
Step 4:
Display Image(RDM)

It has shown the visual clusters by displaying the re-ordered dissimilarity matrix.
Each visual cluster represents a ‘dark-black-colored block’ in the visual image’s
diagonal (of VAT). The SpecVAT is applied to assess data objects with spectral fea-
tures, which improves the clarity of visual clusters with spectral features and helps
acquire adequate knowledge about cluster tendency. The problem of VAT is to pro-
duce the excellent cluster tendency assessment only for the limited size of dimen-
sional datasets. The high-dimensional clusters assessment is well performed with
the spectral features in SpecVAT. However, both VAT and SpecVAT are unable to
handle complex datasets like path-shaped datasets. The iVAT handles this problem
in the assessment of cluster tendency for path-shaped datasets. The critical approach
of iVAT is to compute the path-based distances among the data objects; thus, it
effectively works for path-shaped datasets. For big datasets, clustering with the sam-
pling approach of ClusiVAT is developed to effectively address the big data cluster
tendency problem. The limitation of ClusiVAT is less efficient for the text data clus-
tering problem because text data clustering has come under the non-compact sepa-
rated (non-CS) data. The ClusiVAT perfectly works for CS data rather than non-CS
data.

Tweets are denoted as the text documents and initially modeled with topic mod-
els for deriving the features of tweet documents concerning topics instead of terms.
Documents features versus terms are facing the data sparsity problem due to many
specific terms that appeared in the tweet’s documents. Thus, the feature vector for
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the documents versus topics is the better choice for the clustering problem, and it is
solved with the derivation of topics features of tweets documents with topic mod-
eling techniques. Tweets features are derived in terms of topics, and it has less data
sparsity when compared to defining the tweets features in ‘term frequency (TF) and
inverse document frequency (IDF),” a combined phrase known as TF-IDF [23]. Bag-
of-words [24] for the tweets are expressed concerning topics which is the best choice
of representation in social data clustering due to massive size tweets.

Finding the similarity features based on cosine produces a fair assessment of clus-
ter tendency in cVAT [25] for the set of text (or tweets) documents. In cVAT, dis-
similarity features are obtained concerning a single viewpoint, i.e., origin. Recently,
MVS-VAT is developed for the social healthcare data clustering that computes the
dissimilarity features concerning (N-2) multi-viewpoints instead of a single view-
point for the high quality of social data clusters, where N indicates the documents
count of tweets. Determining the clustering of tweet documents with (N-2) view-
point demands high computational time and memory allocations. With reducing
the complexities, sample viewpoints are needed instead of (N-2) in the pre-clusters
assessment and finding the complete clustering results.

3 Proposed work

The proposed work aims to derive the social data clustering results with an extended
approach—sampling-based viewpoints visual method. This work attempts to address
the problem of MVS-VAT with the selection of sample viewpoints from the inter-
cluster regions, which is presented in Algorithm 2; it is known as sample viewpoints
cosine-based similarity VAT (SVPCS-VAT).

Algorithm 2
Input N — Total Number of Tweets
Tweets Dataset {T1,T2,... Tn}
Output : Cluster Tendency ‘k’,
Tweets Data Clusters ‘C’
Method :

3.1 Methods

Step 1:  Extract tweets feature.

Model the tweets and extract the tweets features with respect to topics
using topic models for the tweets {7}, T,,....Ty}. Features of tweets are
{FFs,...F\).

@ Springer



M. S. Basha et al.

Step 2:

Step 3:

Step 4:

Step 5:
Step 6:

Step 7:
Step 8:

Step 9:

Find the centroid for initial cluster.

Select random number ‘r’ of {1, 2, ..., N}. Find the distances between
F. and {F|,F,,...Fy} and choose the index based on maximum dis-
tance, and max_index =argmax ;. (;, n; {distance(F,, F))} and max_
dist=distance(F,, F})); max_index shows the index of data object and has
been selected as centroid.

Assess the other centroids for topics.

Update the distances for the explored tweets.
Fori=1toN.
Dist; =min(max_dist,

distance(Fy.x index: F1)-
Update the other centroids.

Index of centroid is derived from argmax |, n; {Dist}, update max_
index and max_dist, repeat Step 3 and Step 4 until obtain the topics
centroids.

Find the nearest tweets for the centroids.

Fori=1to N.

Forj=1toN.

Fix the sample size and determine the sample viewpoints from the inter
clusters of two tweet documents features (F,F;). Compute the cosine simi-
larity between these tweets with respective sample viewpoints (vp) of
inter-clusters generated at earlier steps.

npsample
SVPCS(Di,Dj) = avg( > Sim(Dl,DZ))
vpno=vp,Fj—vp
Sim(D1,D2) = cos(Fi — vp, Fj — vp)

Dissimilarity Feature(DM(i,j)) = (1- Normalize(SVPCS(Di,Dj),0,1).
Apply VAT on DM and obtains the RDM.

Display the image of RDM for the sample datasets for addressing unknown
cluster tendency.

Find the crisp partitions. With this cluster, labels of tweets are generated
for discovering the tweets data clustering results ‘C.’

Modeling the tweets with topic models and extracting bag-of-words features
concerning topics are illustrated in Step 1. Bag-of-words are the feature vector that
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consists of individual words. These bag-of-words are in the form of a word embed-
ding model with their frequency counts of each tweet document. The topic model
generates the topics-based bag-of-words instead of word embedding analysis in our
proposed work. Pre-estimations of inter-clusters centroids are computed in Step 2 to
Step 4—euclidean distance used for measuring the distances among the data objects
for selection of centroids. The nearest cluster centroids of other tweet objects are
defined in Step 5. Sample viewpoints are selected from inter-clusters estimations of
earlier steps and used in cosine similarity computation of any two objects, which is
explained in Step 6. Dissimilarity is computed with the subtraction of normalized
similarity value from 1, and these values are stored in the matrix DM. Tweet objects
are re-ordered based on DM, and its results are stored in RDM.

The values in DM represent the distances among the data objects; for example,
the value of (i,j) location in DM denotes the distance between the ith and jth objects.
Initially, data object ‘i’ is selected based on the maximum distance of DM for the
location of (i, j). According to the minimum spanning tree (MST) cuts for the data
objects, the indices of data objects are changed; the dissimilarity matrix’s re-order-
ing is performed according to MST cut indices of data objects.

Step 7 describes the steps for a finding of DM and RDM. Step 8 shows the pro-
cedural steps for obtaining SVPCS-VAT image for presenting the output of cluster
tendency. Step 9 shows the crisp partitions generations and tweets data clustering
results. The crisp partitions are derived with the finding of squareness properties
of appeared black-colored blocks along the diagonal of VAT image. Dark-colored
blocks’ squareness property is derived from the difference of pixel values between
dark-colored blocks and non-dark-colored blocks.

Experimental details and performance study of visual methods for accessing
the clustering tendency and tweets data clustering results are presented in the next
section.

4 Experimental work and performance analysis

Tweets are extracted based on standard health keywords [26] and benchmarked
TREC2017 [27] and TREC2018 [28] keywords. The tweets datasets for the experi-
mental study are presented in Table 1, and sample tweets are given in Table 2.

Sample results of cluster tendency for the TREC2017 (2 topics), 15 topics, and
TREC2018 (6 topics) are shown in Figs. 4, 5, and 6, respectively. Excellent clar-
ity of the visual image has appeared with SVPCS-VAT method. The clustering ten-
dency is determined by counting the total number of grey-shaded/dark-black-colored
blocks. For the mentioned sample topics in the following figure, only SVPCS-VAT
produces the quality of visual dark-colored blocks, which helps for the best assess-
ment of cluster tendency. Therefore, the proposed visual SVPCS-VAT can access
the high quality of social data clusters than other visual methods. Visual images
have appeared with dark- or grey-colored blocks forming along the diagonal, and the
numbers of square-shaped dark-colored blocks in Figs. 4, 5, and 6 are 2, 15, and 6,
respectively. The count of blocks denoted the value of cluster tendency.
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Table2 Sample tweets

Keyword

Sample tweet

Appendix

Bone density

Brain tumor

Common cold

I was once turned away from the ER with a burst appendix because I was trans, and that
was in a liberal city in a country with free healthcare where non-discrimination laws
protected my right to equal access

Why does estrogen protect women from cardiovascular diseases, increases their bone
density, and strengthens their skin and hair while testosterone cases balding and BPH?
This isnt fair

Two years ago, Penelope was diagnosed with a brain tumor. The tumor and surgery left
her with some physical limitations. Every day, Penelope is working to get stronger and
walk more

something I hadn’t really thought of through this pandemic is that my next non-
COVID19 illness (seasonal flu, common cold) is going to be such an existential horror

NMF LDA

cVAT

cVAT VAT

MVS-VAT SVPCS-VAT MVS-VAT SVPCS-VAT

LSI PLSI

cVAT VAT cVAT

o B

MVS-VAT SVPCS-VAT MVS-VAT SVPCS-VAT

N

Fig.4 Cluster tendency assessment for visual methods for TREC-2017 (2 keywords)

@ Springer



Sampling-based visual assessment computing techniques for...

NMF LDA
VAT cVAT VAT cVAT

SVPCS-VAT MVS-VAT SVPCS-VAT

LSI PLSI

cVAT cVAT

MVS-VAT SVPCS-VAT

Fig.5 Cluster tendency assessment for visual methods (for 15 topics)

The crisp partitions are extracted along with the finding of the edginess bounda-
ries of dark-colored blocks along the diagonal. The crisp partitions are derived in
Eq. (1), and parameters details are given in [29]. The crisp partitions illustration for
the 3 topics of TREC2017 is shown in Fig. 7

k " k 5
f(U D) _ Zi:l Zsei,rnofei dsz _ Zi=1 Zs,‘rei,s#r dst (1)
T (= nn; T @ =n)

Inter-cluster viewpoints are selected with the proposed method, and they are used
to find the dissimilarity features of tweets documents, in which good assessment of
cluster tendency is achieved than other visual methods mentioned in Tables 3, 4, 5,
6, and 7. Table 8 presents the goodness of visual images for the visual methods. The
best value of goodness represents the best assessment of clusters.

Performance evaluation conducted with five measures, namely ‘cluster accu-
racy—CA’ [30], ‘normalized mutual information—NMI" [25], ‘Precision—P,’
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NMF LDA
VAT c¢VAT VAT c¢VAT

MVS-VAT SVPCS-VAT MVS-VAT SVPCS-VAT

LSI PLSI
VAT cVAT VAT cVAT

MVS-VAT SVPCS-VAT

S——
il =
1 M . ﬁ..

Fig.6 Cluster tendency assessment for visual methods (TREC2018—®6 topics)

Fig.7 Crisp partitions of
SVPCS-VAT-NMF image
(TREC2017—3 topics)
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‘Recall—R, and ‘F-Measure—F’ [31]. It is observed that the proposed SVPCS-
VAT scored the highest performance values compared to others under various topics
of tweets datasets.

Social data clustering results are derived with visual methods, and these are eval-
uated with four different topic modelling techniques (NMF-Features, LDA-Features,
LSI-Features, and PLSI-Features). Crisp partitions are derived for the clustering of
mentioned tweets data. Based on the ground-truth labels of tweets and predicted val-
ues, finally, the confusion matrix values are computed. Tweets classification model
correctly predicts the positive and negative classes are referred to as true positive
and true negative, respectively. In contrast, the model incorrectly predicts the posi-
tive and negative classes; then, they are false positives and negatives. With the con-
fusion matrix values, visual methods’ performance is computed with the following
measures: Precision—P, Recall—R, and F-Measure—F. In all the cases of topic
models, i.e., NMF, LDA, LSI, and PLSI, it is observed that proposed SVPCS-VAT
scored the best performance scores compared to VAT, cVAT, and MVS-VAT.

The proposed SVPCS-VAT uses a few viewpoints for instead of (N-2) viewpoints,
unlike MVS-VAT. The particular sample viewpoints are from the inter-clusters only,
and the sampling-based viewpoints procedure has taken less amount of computation
time and memory allocation during the generation of tweets data clustering results.
The experimental study is carried out on tweets dataset for the 2 topics to 15 topics.
Figures 8 and 9 show the time and space analysis of visual methods, which illus-
trates that the proposed SVPCS-VAT requires less time and memory requirements;
hence, the proposed method achieves a suitable scalability MVS-VAT method. Per-
formance analysis of visual methods in the experiment illustrates that SVPCS-VAT
is a useful visual method that effectively accesses cluster tendency and discovers the
quality of clusters for the tweet’s dataset.

The speedup of SVPCS-VAT is estimated based on calculating the quotient con-
cerning the computational (wall) time of MVS-VAT. Figure 10 shows the speedup
values of SVPCS-VAT with respect to MVS-VAT. It was observed that the fastness
of SVPCS-VAT is much improved. Experiment is conducted for the sample data
in our proposed work, and empirical analysis is performed for the topics (2 topics
to 15 topics). With the overall empirical analysis, it is observed that our proposed
methods SVPCS-VAT-NMF, SVPCS-VAT-LDA, SVPCS-VAT-LSI, and SVPCS-
VAT- PLSI are time and space efficient when compared to MVS-VAT-NMF, MVS-
VAT-LDA, MVS-VAT-LSI, and MVS-VAT-PLSI, respectively. These methods have
also outperformed the others concerning CA, NMF, P, R, and F. Among the four
proposed models, SVPCS-VAT-NMF performed as the best for the large tweets data
clustering.
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Fig. 8 Comparison of computational time for the visual methods—MVS-VAT and SVPCS-VAT

5 Conclusion and Future Scope

Accessing the clustering tendency is the crucial pre-clustering problem, which is
useful for improving the quality of social data clusters. Health data clustering is an
emerging need for society; thus, health-related tweets are extracted for finding the
tendency of health data over social media (Twitter). Existing visual method MVS-
VAT can assess the clustering tendency with (N-2) viewpoints to demand high
computational time and memory allocation. The proposed sampling-based visual
method, SVPCS-VAT, overcomes the complexity issues in social data clustering.
Visual methods need to be extended with the parallel distributed techniques for han-
dling the issues related to big social data clustering applications.
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