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Abstract
The data cluster tendency is an emerging need for exploring the big data cluster 
analysis tasks. The data are evaluated based on the number of clusters is known as 
cluster tendency. Many visualization techniques have been developed for the detec-
tion of cluster tendency. Some of the existing techniques include Visual Assessment 
Tendency (VAT), spectral-based VAT (SpecVAT), and improved VAT (iVAT), are 
considerably succeeded for an assessment of cluster tendency for small datasets. A 
bigVAT is another method that was recently developed for the estimation of clus-
ter tendency of big data. It is perfect for deriving the clustering tendency in visual 
form for big data. However, it is intractable to explore the data clusters for large 
volumes of data objects. The proposed work addresses the clustering problem of 
bigVAT with the derivation of sampling-based crisp partitions. The crisp partitions 
will accurately predict the cluster labels of data objects. This research is based on 
big synthetic and big real-life datasets for demonstrating the performance efficiency 
of the proposed work.
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1  Introduction

Big data [3] is a massive representation of vast volumes of either regular or com-
plex datasets. Big data clustering problem depends on two key steps: cluster ten-
dency and cluster partitions of big data. The cluster tendency [4] accesses the 
preliminary information about the number of clusters. An efficient k-means [5] 
algorithm discovers the cluster quality when prior cluster tendency is known (i.e., 
k is known). The value of cluster tendency is assigned either by the user or any 
external interference. Generally, such ’k’ is intractable in the k-means algorithm 
for big data. Visualization techniques [6, 7], are used for determining the prior 
information about cluster tendency. Visual Access Tendency (VAT) is proposed 
by Bezdek et al. [1] for accessing the information about several clusters with the 
dissimilarity matrix [2] of data objects. The dissimilarity matrix is computed 
by finding the dissimilarity features of data objects using distance metrics [7]. 
These two distance metrics are recommended in many data clustering applica-
tions, which are Euclidean and cosine metrics [8]. In data clustering, distance 
metrics play a critical role in dissimilarity features computation among the differ-
ent data objects. The other visualization techniques such as SpecVAT and iVAT 
are used for the detection of cluster tendency for complex datasets. The bigVAT 
enhances visualization techniques for accessing the clustering tendency of big 
data. Visualization techniques have shown the clusters in visual form as ’square-
shaped dark colored blocks’. The number of these blocks refers to the clustering 
tendency. The existing techniques inadequate to address the clustering problem 
completely, i.e. they detect only the cluster tendency and cannot derive the data 
clustering results. A combination of visualization techniques with either k-means 
or minimum-spanning tree clustering can solve the clustering problem. However, 
these hybrid approaches are expensive for big data. The proposed work derives 
the sampling-based crisp partitions from the visual clusters (i.e., square-shape 
dark colored blocks) and also it predicts the cluster labels of data objects. The 
bigVAT is extended with sampling procedure and crisp partitions in the proposed 
work, and it is significantly essential for the cluster tendency assessment and 
cluster partitions of big data. Figure 1 shows the critical procedural steps of big 
data clustering with sampling-based crisp bigVAT (SC-bigVAT). Intercluster data 
objects are selected by determining the data objects with the maximum dissimi-
larity value which are nearest objects and those objects are derived for the inter-
clustering data objects. It is performed with a min–max sampling procedure [9]. 
The best samples of inter-cluster data objects are selected to calculate the dissim-
ilarity matrix for the set of selected sample data objects. A bigVAT is applied on 
the dissimilarity matrix of sample inter-cluster data objects to visualize the visual 
image clusters which are indicated with black colored square blocks. Squareness 
and edginess values are derived for the visual image clusters, useful for the crisp 
partitions derivations.

The crisp partitions are derived for sufficient samples of big data. The crisp 
partitions are derived from the visual image clusters for finding the cluster labels 
of big data objects. The crisp-partitions depict the aligned k-partitions of the 
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visual image and it is derived from the detection of obtained square-blocks (dark-
colored) along the diagonal in the visual image. The square edginess of the diago-
nal determines the crisp partitions and also it computes the difference between 
diagonal and non-diagonal square-blocks in the visual image.

The highlights of contributions of the work are described as follows:

1.	 Cluster tendency of big data is determined for understanding the prior information 
about big data clusters

2.	 Best samples of big data are selected from the derived inter-clusters
3.	 Visualize the image clusters for the big data in the form of square-shaped blocks
4.	 Compute the crisp partitions for discovering the big data clusters
5.	 Performance analysis is conducted for illustrating the efficiency of proposed work

Fig. 1   Sampling-based Crisp 
bigVAT

Select the Best Samples of Inter 
Clusters Data Objects 

I/P: Big Data 

Dissimilarity Matrix of 
Sample Data Objects 

Apply bigVAT for Dissimilarity 
Matrix 

Visual Image Clusters 

Derive Crisp Partitions 

Clustering Results of 
Sample Data Objects 

Enough Samples 
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Big Data Clusters 
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The layout of this article is organized as follows. Section 2 describes the litera-
ture work. The proposed sampling-based visualization techniques are explained in 
Sect. 3. The experimental results and performance analysis are presented in Sect. 4. 
Finally, Sect. 5 draws the conclusion and scope of the research work.

2 � Literature work

Data clustering problems are used in the applications like pattern recognition [19], 
text clustering [20], image clustering [21], trajectory detection [22], bio-mining 
[23] etc. The k-means and hierarchical clustering methods are the prime clustering 
methods [10] that can effectively generate the data partitions for unlabelled data. In 
such methods, the user interference is necessary for the pre-assignment of the ‘k’ 
value (also known as cluster tendency). The k-means is the most popular technique 
due to its applicability in information or data science. These clustering methods suf-
fer from the issues of cluster tendency. Visualization techniques are useful for the 
assessment of cluster tendency of unlabelled datasets. VAT [11] is the basic visu-
alization technique, and it is developed for the detection of cluster tendency. It finds 
the dissimilarity features among the data objects and places the values in matrix 
form, called a Dissimilarity Matrix (DM). Similarity features computation shows 
the major impact in data clustering problems. Most of the data clustering algorithms 
derive the similarity (or dissimilarity features) among the data objects with either 
Euclidean or cosine metrics, which are shown in Eq. (1) Moreover, (2), respectively, 
the dissimilarity (or similarity) is computed among the two objects ’o1′ and ’o2′ for 
the ’n’ properties.

Equations (3) and (4) have shown the similarity features obtained from Euclidean 
and Cosine results, respectively. The dissimilarity (or similarity) computation among 
the data objects is performed based on the magnitude and direction of data vectors 

(1)D(o1, o2) =

√
(x1 − y1)2 +…+ (xn − yn)2

(2)Similarity (o1, o2) = 1 − D(o1, o2)

(3)Cosine(o1, o2) =
o1.o2

o1o2

(4)Similarity = Normalized (Cosine(o1, o2))

(5)MVS(o1, o2) = avg

⎛
⎜⎜⎜⎜⎜⎝

N−2�
vpno = 1,

vp ∈ O − {o1, o2}

Sim(d1, d2)

⎞⎟⎟⎟⎟⎟⎠
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for the data objects, whereas in Euclidean, consider only the magnitude among the 
data objects. Cosine-based data clustering succeeds specifically in text data cluster-
ing problems [18]. The extension of cosine metric is developed in [19] for finding 
the most accurate similarity features among the data objects, which is a multi-view-
point cosine-based similarity metric (MVS) [25] and it is shown in Eq. (5), in which 
sim (d1, d2) = cos (o1-vp, o2-vp). Traditional cosine uses the single viewpoint as the 
reference in similarity features computation among any two objects, whereas MVS 
uses the multiple viewpoints in similarity features computation. In the text data clus-
tering applications, it shows the robust performance compared to Euclidean and tra-
ditional cosine metrics.

VAT is enhanced as iVAT[12] for detection of cluster tendency for path-shaped 
datasets. The basic VAT approach is shown in Algorithm  1. Initially, it takes the 
dissimilarity matrix ‘dissM[][]’ for the set of data objects ‘n’. The aim is to find the 
re-ordered dissimilarity matrix (RDM) based on the ordering of distances among 
the various data objects. Finally, displays the visual image of RDM for showing the 
clusters as square-shaped dark colored blocks. Another method, say, SpecVAT[13] 
finds the best spectral features by deriving the Eigenvectors [14]. Affinities among 
the data objects are computed for finding the Laplacian matrix of unlabelled data. 
The largest k-Eigen vectors are used for the selection of spectral features of data.

The Dissimilarity matrix is computed for the ’n’ data objects concerning the spec-
tral features in SpecVAT. The high-dimensional clusters assessment is performed 
well by finding the spectral features in SpecVAT. However, both VAT and SpecVAT 
are unable to handle complex datasets like path-shaped datasets. It also presents the 
best assessment of cluster tendency for various datasets. Another technique, bigVAT 
[15] is scalable, and overcomes the computational issue in the assessment of cluster 
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tendency for the big data. State-of-the-art visualization techniques are adequate for 
finding the clustering tendency for both complex and big datasets. These are sig-
nificantly used for the pre-estimation of cluster tendency in data clustering methods. 
Both the visualization techniques and k-means are recommended for the data clus-
tering problems. These two types of hybrid techniques are proposed in [16] for per-
forming data clustering with known cluster tendency, which is VAT-based k-means 
and VAT-based MST-clustering [17]. The VAT-based k-means is efficient and rapid 
for data clustering when compared to VAT-based-MST-clustering. In such methods, 
the normal or medium-sized data sets are suitable for finding both cluster tendency 
and discovering the quality of data clusters. Big data is expensive when consider-
ing the time and space values due to running both visualization techniques and data 
clustering algorithms. In this article, sampling-based crisp partitions are derived 
from the visual image clusters, which groups the data objects into clusters according 
to predicted cluster labels. It is less expensive for big data than hybrid approaches, 
and its methodology is explained in the next section.

3 � Sampling based visualization technique for big data clustering

The best samples are returned to the calling procedure of sampling inter-cluster 
viewpoints (SICP) and it is shown in step 1 of algorithm 2. The Re-Ordered Dis-
similarity Matrix (RDM) is computed for the selected sample data objects of SICP 
and obtains the image of RDM. The profiles of RDM visual images are extracted 
with bigVAT for faster assessment of cluster tendency ‘k’. The crisp partitions of the 
sample data are obtained for the ’k’ clusters by calling procedure Crisp_partitions in 



819

1 3

Distributed and Parallel Databases (2021) 39:813–832	

step 2. Finally, the cluster labels of data objects determined in the Crisp_partitions’ 
procedure of Crisp_partitions returns the same for discovering data clusters in step 
3.

In SICP, initially, a random object is selected among the ’N’ data object, and it 
is considered as the centroid of the initial cluster. The distance between the other 
objects are computed concerning the initial cluster centroid and choose the maxi-
mum distance for defining another inter-cluster data object (or another centroid). 
Further, the distance of objects is updated according to the determined centroid. The 
distinguished sample viewpoints are selected from the centroids based created clus-
ters using SICP. A few sample viewpoints of each cluster are considered instead of 
selecting the samples from the entire data. The sample viewpoints by themselves 
denote the self-organized clustering structures hence, it is sufficient for the repre-
sentation of big clustering structures. These viewpoints are selected as the reference 
objects when measuring the dissimilarity (or dissimilarity) among the different data 
objects. The samples are selected based on the minimum distance. The algorithm 3 
illustrates these steps for determining the centroids of clusters and the data objects 
of respective cluster centroids. The sample inter-cluster data objects are returned at 
the end of SICP.
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The visual image consists of black or grey colored square-shaped blocks, and the 
difference between diagonal and non-diagonal blocks is computed using Eq. (6).

The function f(U,D) is maximized for the k-aligned partitions. These steps are 
illustrated in Algorithm 4 for returning the data objects of derived clusters ‘C’ from 
the crisp partitions.

The experimental details of the proposed work and performance study are 
described in the following sub-section.

4 � Experimental and performance analysis

The performance analysis is demonstrated for the visualization techniques in the 
data clustering of big data.

4.1 � Details of datasets

In the experiment, six big synthetic and four big real datasets were used, in which 
the efficiency of the proposed visualization technique is analyzed for the lakhs of 
data objects. Table 1 presents the details of the big data used in the experimental 
study.

The six synthetic datasets are generated in MATLAB 2020 with the setting of 
required gaussian parameters and shown visually in Fig. 2. These datasets are cre-
ated in two-dimensional space. There are four real datasets are freely available in 
the UCI Machine Learning Data Repository [26] and [27], in which the features are 
scaled between [0, 1].

(6)f (U,D) =

�∑k

i=1

∑
si,tnoti d

∗
st∑k

i=1

�
n − ni

�
ni

�
−

�∑k

i=1

∑
s,ti,s≠t d

∗
st∑k

i=1

�
n2
i
− ni

�
�

Table 1   Description of synthetic and real datasets

S. No Nature of the data Name of the dataset Number of 
data objects

1 Synthetic Data S-1 (2-Clusters Full Moon Data) 100,000
2 Synthetic Data S-2 (2-Clusters half-Kernel Data) 100,000
3 Synthetic Data S-3 (3-Clusters Gaussian Data) 150,000
4 Synthetic Data S-4 (4-Clusters Corners Data) 200,000
5 Synthetic Data S-5(4-Clusters Outlier Data) 200,000
6 Synthetic Data S-6 (5-Clusters Gaussian Data) 250,000
7 Real Data MiniBooNE (2-Clusters Data) 130,064
8 Real Data FOREST (7-Clusters Data) 581,012
9 Real Data MNIST (10-Clusters Data) 70,000
10 Real Data KDDCUP (23-Clusters Data) 4,898,431
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For the big synthetic and real datasets, the proposed SC-bigVAT visualization 
technique displays sample profiles’ visual image, unlike the entire VAT image. Thus, 
its applicability is more for big data than other visualization techniques. The experi-
mental of SC-bigVAT is conducted under two metrics, i.e., Euclidean and Cosine, 
and their clusters generation are shown in the form of visual image clusters, which 
are illustrated in Figs. 3, 4, 5, 6, 7, 8, 9, and 10, 11 for 2-clusters moon data, half-
kernel data, 3-clusters gaussian, 4- clusters gaussian, 5-clusters gasussian, 2-clusters 
MiniBooNE, 7-clusters Forest data, and 10-clusters real MNIST data respectively.

Figure 11 shows the assessment of cluster tendency for the real big data-MNIST 
(10-clusters data). It also is shown those 10 visual square-shaped black colored 
blocks in diagonal of SC-bigVAT image. Similarly, Fig.  12 showed the assess-
ment of KDDCUP dataset. The two visual images are obtained for finding the data 
object’s similarities with Euclidean and cosine metrics. The dissimilarity and re-
ordered dissimilarity matrices are obtained from the dissimilarity (or similarity) 

Fig. 2   Big synthetic datasets. a Under Euclidean. b Under Cosine

Fig. 3   Assessment of 2- Clus-
ters Moon Data using Sampling-
based Crisp -bigVAT (SC-VAT) 
with Two Distance Metrics 
(sample = 10% of original data). 
a Under Euclidean. b Under 
Cosine
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Fig. 4   Assessment of 2- Clus-
ters half-Kernel Data using 
Sampling-based Crisp -bigVAT 
(SC-VAT) with Two Distance 
Metrics (sample = 10% of origi-
nal data). a Under Euclidean. b 
Under Cosine

Fig. 5   Assessment of 3- Clus-
ters Gaussian Data using 
Sampling-based Crisp -bigVAT 
(SC-VAT) with Two Distance 
Metrics (sample = 10% of origi-
nal data). a Under Euclidean. b 
Under Cosine

Fig. 6   Assessment of 4- 
Clusters Corner Data using 
Sampling-based Crisp -bigVAT 
(SC-VAT) with Two Distance 
etrics (sample = 10% of original 
data). a Under Euclidean. b 
Under Cosine

Fig. 7   Assessment of 4- Clusters Outlier Data using Sampling-based Crisp -bigVAT (SC-VAT) with Two 
Distance Metrics (sample = 10% of original data). a Under Euclidean. b Under Cosine
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Fig. 8   Assessment of 5- Clus-
ters Gaussian Data using 
Sampling-based Crisp -bigVAT 
(SC-VAT) with Two Distance 
Metrics (sample = 10% of origi-
nal data). a Under Euclidean. b 
Under Cosine

Fig. 9   Assessment of 2- Clus-
ters MiniBooNE Data using 
Sampling-based Crisp -bigVAT 
(SC-VAT) with Two Distance 
Metrics (sample = 10% of origi-
nal data). a Under Euclidean. b 
Under Cosine

Fig. 10   Assessment of 7- Clusters Forest Data using Sampling-based Crisp -bigVAT (SC-VAT) with 
Two Distance Metrics (sample = 10% of original data)

Fig. 11   Assessment of 10- 
Clusters Real MNIST Data 
using Sampling-based Crisp 
-bigVAT (SC-VAT) with Two 
Distance Metrics (sample = 10% 
of original data). a Euclidean. 
b Cosine
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features of data objects. Thus, similarity metrics are showing a significant role in 
the assessment of cluster tendency. With the visualization results of both synthetic 
and real datasets, it is observed that the cosine metric poses the best assessment of 
cluster tendency. Cluster tendency is derived from the count of the number of diago-
nal squared blocks for the dataset. Cosine based SC-bigVAT justifies the clustering 
tendency with more clarity of visual image than Euclidean based SC-bigVAT.

Crisp partitions are identified with the finding of the square edginess of square-
shaped diagonal blocks. The relevant objects information is retrieved with the find-
ing of k-aligned partitions defined in the earlier sections of the proposed algorithms. 
Crisp partitions predict the information of cluster labels of data objects. These 
information are compared with ground truth labels for finding quality data clus-
ters through performance measures such as cluster accuracy (CA) [28], normalized 
mutual information (NMI) [29], precision, recall, and F-Measure [30]. Tables 2 and 
3 present the performance of visualization techniques for empirical observations.

From the performance study of the experimental, the SC-bigVAT is performed as 
the best when compared to the big data clustering method, faster spherical k-means 
(SPKM) [31], and CLARA [32]. The SPKM scans the given big data in a single 
time and it is a speedy version of k-means algorithm. In SPKM, the space of the 
cluster centers is obtained by the gradient descent approach [33]. The Clustering 
LARge Applications (CLARA) is designed for handling big datasets, in which rep-
resentative objects are not derived. However, it uses the Partition Around Medoid 
(PAM) on the sample and determines the medoid of the sample. The CLARA 
selects the medoid samples instead of representatives of the data. The comparative 
scores observed that the SC-bigVAT scores the best cluster accuracy value related 
to the performance parameters such as NMI, precision, recall, and F-measure. The 
best scores are highlighted in bold in Tables 2 to 3. The proposed sampling-based 
crisp partition bigVAT under the cosine performed as the best when compared to 
CS-bigVAT under Euclidean. Thus, it recommended the big data clustering under 
cosine space for achieving robust data clusters.

Figures 13, 14, 15, 16, and 17 shows the performance comparison empirically for 
the two existing methods SPKM, CLARA. These two proposed visualization tech-
niques for big data clustering are represented as bar graphs. Spherical k-means is 
efficient when compared to CLARA for the data clustering of big datasets.

With this empirical analysis of performance parameters such as CA, and NMI 
which are shown in Figs. 13 and 14, respectively. It is observed that the SC-bigVAT 

Fig. 12   Assessment of 23- 
Clusters KDDCUP Data using 
Sampling-based Crisp -bigVAT 
(SC-VAT) with Two Distance 
Metrics (sample = 10% of origi-
nal data). a Euclidean. b Cosine
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under the Cosine metric is outperformed with others. The precision, recall, and 
F-measure empirical analysis are shown in Figs. 15, 16, and 17, respectively, and 
here also the same observation is made that SC-bigVAT is significantly suitable 
for the big data when compared with traditional spherical k-means and CLARA 
methods.

4.2 � Computational complexity

The existing CLARA and SPKM are widely used for big data clustering. How-
ever, their computational times are depending on the selection of sample size, and 
the number of clusters. For the big data, the sample size ‘s’ also extremely large 
and these techniques demand high computational complexities i.e. quadratic com-
plexities. The proposed sc-bigVAT uses a few sample viewpoints and it should be 
less than (s/2). Thus, quadratic complexity requirements of big data clustering are 
reduced in our proposed sc-bigVAT.

The time and space analysis graphs are shown in Figs.  18 and 19. With 
this analysis, it can be stated that the proposed SC-bigVAT under cosine and 

Table 2   CA and NMI for the big 
data clustering methods

Dataset CLARA​ SPKM SC-biVAT 
(Euclidean)

SC-bigVAT 
(Cosine)

Cluster accuracy (CA)
S-1 0.483 0.499 0.721 0.769
S-2 0.675 0.775 0.911 0.988
S-3 0.755 0.725 0.922 0.967
S-4 0.741 0.842 0.891 0.945
S-5 0.754 0.952 0.822 0.954
S-6 0.753 0.777 0.753 0.680
MiniBooNE 0.483 0.422 0.583 0.684
FOREST 0.568 0.567 0.566 0.600
MNIST 0.497 0.498 0.521 0.511
KDDCUP 0.331 0.432 0.491 0.411
Normalized mutual information (NMI)
S-1 0.607 0.607 0.580 0.610
S-2 0.958 0.958 0.916 0.958
S-3 0.903 0.903 0.874 0.906
S-4 0.859 0.859 0.861 0.882
S-5 0.851 0.851 0.906 0.908
S-6 0.626 0.626 0.632 0.642
MiniBooNE 0.585 0.585 0.590 0.598
FOREST 0.564 0.564 0.565 0.570
MNIST 0.454 0.454 0.438 0.471
KDDCUP 0.514 0.514 0.449 0.520
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Euclidean is a faster big data clustering technique when compared to existing 
SPKM and CLARA techniques. The speed of the proposed methods sc-big-
VAT (Euclidean) and sc-bigVAT (cosine) were analyzed relative to SPKM and 
CLARA which are shown in Fig.  20. This analysis stated that the speed of sc-
bigVAT is improved exponentially, hence our proposed work is more suitable for 
big data clustering problems.

Table 3   Precision, recall, and 
F-measure for the big data 
clustering methods

Dataset CLARA​ SPKM SC-biVAT 
(Euclidean)

SC-bigVAT 
(Cosine)

Precision (P)
S-1 0.441 0.521 0.855 0.922
S-2 0.332 0.442 0.621 0.931
S-3 0.212 0.344 0.743 0.923
S-4 0.282 0,345 0.822 0.954
S-5 0.121 0.521 0.876 0.966
S-6 0.433 0.965 0.911 0.899
MiniBooNE 0.332 0.776 0.876 0.891
FOREST 0.452 0.672 0.723 0.762
MNIST 0.387 0.654 0.711 0.687
KDDCUP 0.443 0.766 0.856 0.812
Recall (R)
S-1 0.526 0.521 0.978 1.000
S-2 0.41 0.734 0.685 0.775
S-3 0.327 0.68 0.977 0.995
S-4 0.311 0.497 0.957 0.968
S-5 0.264 0.495 0.943 0.948
S-6 0.252 0.455 0.978 1.000
MiniBooNE 0.201 0.306 0.68 0.961
FOREST 0.195 0.257 0.571 0.687
MNIST 0.19 0.261 0.497 0.682
KDDCUP 0.174 0.228 0.468 0.611
F-Measure (F)
S-1 0.8 0.75 0.5 0.812
S-2 0.675 0.45 0.733 0.742
S-3 0.594 0.481 0.681 0.602
S-4 0.565 0.445 0.495 0.571
S-5 0.533 0.479 0.495 0.541
S-6 0.454 0.4 0.454 0.458
MiniBooNE 0.434 0.388 0.541 0.451
FOREST 0.408 0.308 0.419 0.425
MNIST 0.463 0.303 0.443 0.471
KDDCUP 0.325 0.255 0.386 0.414
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5 � Conclusion and scope of the work

Cluster tendency discovers the prior information about the clusters in data clustering. 
The existing visualization techniques effectively determine the clustering tendency in 
the form of visual image clusters. However, it produces the value of cluster tendency 
for the specific limited size of datasets. The proposed work attempts the big data clus-
tering problem, in which initially cluster tendency of big data is addressed with the 
sampling technique. The crisp partitions are derived from visual image clusters that 

Fig. 13   Cluster accuracy comparison for big data clustering methods (existing and proposed visualiza-
tion technique)

Fig. 14   Normalized mutual information comparison for big data clustering methods (existing and pro-
posed visualization technique)
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accurately predict the cluster labels of data objects in big data clustering. In future 
work, sampling-based crisp bigVAT is to be enhanced with the subspace learning tech-
niques for handling the scalability issues of high dimensional big data.

Fig. 15   Precision comparison for big data clustering methods (existing and proposed visualization tech-
nique)

Fig. 16   Recall comparison for big data clustering methods (existing and proposed visualization tech-
nique)
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Fig. 17   F-Measure comparison for big data clustering methods (existing and proposed visualization tech-
nique)

Fig. 18   Time analysis for big data clustering methods
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