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a b s t r a c t

Reliability, and safety are considered as the indispensable twins during the adoption of the cloud
computing environment since their breaches lead to catastrophic issues in poor resource management
and unreliable service quality. To be specific, Distributed Denial of Service (DDoS) attack is determined
as the most vulnerable threat in the cloud space as it lowers the ability of the predominant resources’
for preventing their optimal utilization. The advent of Software-Defined Networking (SDN) is estimated
to wide open the feasibility in preventing DDoS attacks in the cloud space. In this paper, a Rival-Model
Penalized Self-Organizing Map (RMP-SOM) enforced DDoS Attack Prevention Mechanism is proposed
for the remarkable prevention of DDoS attack by utilizing the potential characteristics of SDN that
focuses on the possibility of facilitating network global perspective, effective investigation of network
traffic, and an enhanced process of rule updating. This proposed RMPSOM-SDNDM scheme utilizes the
benefits of the constant rate in order to ensure priority to the closest neuron and its neighborhood
rather than its farthest rival neuron for facilitating better detection accuracy. The simulation results of
the proposed RMPSOM approach confirmed a phenomenal sensitivity, specificity and accuracy rate
during the process of detecting DDoS attacks in the cloud space on par with the baseline DDoS
mitigation schemes considered from the literature.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

In a cloud computing environment, security issues are con-
idered to be the highest concern to a diversified number of
takeholders in order to enable them in deciding on an appro-
riate method of adoption [1]. In the recent past, a considerable
umber of researchers have focused on the cybersecurity issue
ntending to revise the cloud space such that they do not influ-
nce the resource management, service quality, and budget of
he cloud computing environment [2]. To be specific, Distributed
enial of Service (DDoS) attack is considered as the most vul-
erable security issue in the cloud space since it compromises
he host to forward a huge amount of data to the targeted
ictims [3]. This compromise of the hosts is mainly for depleting
erver bandwidth, unnecessary utilization of the cloud computing
esources, and for introducing imbalance in the synchronization
etween cloud entities to a maximum level [4]. Generally, DDoS
ttacks target the server to hurdle its service provisioned to the
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consumers of the cloud environment [5]. Then, the DDoS attack-
ers disguised as legitimate customers flood the interacting server
to a maximum degree such that maximum services are made un-
available because of the large number of requests that remain un-
processed leading to the overflow condition of queue service [6].
To be specific, DDoS attackers correspond to the collection of
machines that concentrates on crumbling the services of the
existing resources by unnecessary exhaustion of focused service.
Further, a significant number of proofs also inferred the target
shift of DDoS attacks to the cloud infrastructures and services.
Several prevention approaches were proposed in the literature in
the recent decade for handling the impacts of the DDoS attack
on the cloud computing environment [7]. The emergence and
the recent advent in Software-Defined Networking (SDN) during
recent years also proved to increase the viability in preventing
the DDoS attack in the cloud computing environment [7]. Thus,
the SDN-based cloud service provision enhances the possibility
of defeating DDoS attacks in the cloud environment. However,
a kind of contradictory association exists between the SDN and
the DDoS attack in the cloud environment since the SDN focuses
on centralized control, software-oriented traffic analysis, dynamic
and reactive forwarding rule enhancement for detecting and re-

acting to the degree of influence imposed by the attackers [8]. At

https://doi.org/10.1016/j.jpdc.2021.03.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.03.005&domain=pdf
mailto:pillutlaharikrishna@yahoo.co.in
https://doi.org/10.1016/j.jpdc.2021.03.005


P. Harikrishna and A. Amuthan Journal of Parallel and Distributed Computing 154 (2021) 142–152

t
b
i
t
v
f
v
S
e
s
i
c

i
f
r
p
s
d
f
n
t
r
i
t
m
f
d
t
e
T
t
i
u

s

l
c
t
v
a
a
r
d
a
S
s

he same time, the security of SDN is another issue that needs to
e addressed since the DDoS category of attacks are also possible
n the SDNs. The recent contributions to the literature enhance
he probability of including the characteristic merits of different
ariants of Self Organizing Maps (SOM) to investigate the traffic
low in the cloud environment [9]. This inclusion of different
ariants of SOM was confirmed to improve the security of the
DN as well the security of the incorporated cloud computing
nvironment with the view to improve the centralized control,
oftware-oriented traffic analysis, dynamic and reactive forward-
ng rule enhancement for preventing the DDoS attackers in the
loud environment [10].
In this paper, Rival-Model Penalized Self-Organizing Map us-

ng Software Defined Network (RMPSOM-SDNDM) is proposed
or enforcing DDoS attack prevention in a cloud computing envi-
onment. This proposed RMPSOM-SDNDM scheme focuses on the
reservation of the topological structure of the input data by con-
idering the maximum similarity quantified based on Euclidean
istance. This quantification of the similar probabilistic data traf-
ic flow factors aids in potential mapping to the neighboring
eurons in the RMPSOM for facilitating superior and reliable de-
ection of DDoS in the cloud environment. The constant learning
ate in the proposed RMPSOM-SDNDM scheme is mainly used for
mproving the adaptation necessary in classifying the monitored
raffic flows into normal and malicious. The simulation experi-
ents of the proposed RMPSOM-SDNDM scheme are investigated

or quantifying its excellence based on detection accuracy under
ifferent False Positive rate by varying the data rates. Further,
he potential of the proposed RMPSOM-SDNDM scheme is also
xplored based on the False Positive rate, True Positive rate, and
rue Negative rate under different intensities of data rate. Besides,
he excellence of the proposed RMPSOM-SDNDM scheme is also
nvestigated using True Positive Rate by varying the data rates
nder the impact of varying intensities of False Positive rate.
The major contributions of the proposed RMPSOM-SDNDM

cheme are listed as follows.

(i) It is proposed with a significant learning algorithm that
adaptively selects different arrivals of each input among
the best-matching unit with the penalization of their re-
lated models during the classification process of data traffic
flows.

(ii) It is the potential classification scheme proposed for better
classification between normal and malicious data traffic in
SDN based on the merits of RSOM.

(iii) It is proposed with the benefits of neurons that are em-
ployed in the process of estimating the Euclidean distance
between the actual data traffic with the expected data
traffic in order to prevent DDoS attacks in the cloud space.

(iv) It included a constant learning rate that prevents the worst
selection of a monotonically decreasing function for the
purpose of attaining robust classification.

The forthcoming sections of the paper are organized as fol-
ows. Section 2 presents a potent review of the most recent
ontributions proposed in the literature for mitigating DDoS at-
acks in the cloud environment. Section 3 highlights the detailed
iew of the proposed RMPSOM-SDNDM scheme with its char-
cteristics, merits, and role in detecting and preventing DDoS
ttacks in the cloud space. Section 4 exemplars the simulation
esults of the proposed RMPSOM-SDNDM scheme evaluated un-
er the detection accuracy, False Positive rate, True Positive rate,
nd True Negative rate under different intensities of data rate.
ection 5 concludes the paper with major contributions and the
cope of future research.
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2. Related work

Initially, a DDoS attack mitigation framework named Athena
was proposed using SDN for detecting anomaly misbehavior tasks
in a cloud computing environment [11]. This Athena mitigation
framework was proposed as a complete mitigation architecture
for facilitating an improved degree of scalability. The detection
accuracy of this Athena framework was determined to be pre-
dominant since it uses the benefits of the control plane and
data plane for superior mitigation. Another, SDN-based DDoS
attack mitigation mechanism was contributed for improving the
possibility of detection and rapid isolation of traffic flow from
cloud computing [12]. The detection accuracy of this SDN-based
DDoS attack mitigation mechanism was estimated to be excel-
lent since it possesses adaptive response in categorizing flow
into genuine and attack flows depending on the kind of data
traffic flow. The False Positive rate of this SDN-based DDoS at-
tack mitigation mechanism was estimated to be better than the
comparable Athena Framework. A Transmission Control Protocol
(TCP)-based DDoS attack mitigation scheme was proposed us-
ing SYN cookies for eliminating the influence of attack in the
cloud server [13]. This TCP-based DDoS attack mitigation scheme
prevents the DDoS attacks by monitoring the proxy, false and
duplicate acknowledgment generated from the client. This TCP-
based DDoS attack mitigation approach uses dual layers of se-
curity in which several rules are investigated for classifying the
genuineness. This TCP-based DDoS attack mitigation approach
also used the Message Authentication Code (MAC) for facilitating
superior security in the cloud computing environment.

Further, a DDoS attack prevention scheme using virtualization
of network function and benefits of SDN was proposed for catego-
rizing the traffic flows into genuine and malicious [14]. This DDoS
attack prevention scheme using network function virtualization
enhances the possibility of detection by using a lightweight prob-
ing method. This lightweight probing method incorporation was
utilized for assigning a virtual scrubbing factor that aids in re-
ducing the network delay, with the possibility of approaching
the victim of DDoS attack under reduced network proof that is
left between the attacks. This DDoS attack prevention scheme
facilitated an improved response time by 96.79% during its eval-
uation under the design of the proof of concept approach. An
SDN-based DDoS attack detection framework called DELTA was
proposed for identifying, standardizing, and automating the pro-
cess of eliminating weakness that results in the SDNs. This DELTA
framework possesses the options of re-instantiating different SDN
attacks in a number of implementation environments. This DELTA
framework also utilized a fuzzy module that aids in the auto-
matic discovery of weaknesses that emerge during the control of
hosts in the cloud environment. The Detection Accuracy, Preci-
sion, and the Recall value of this DELTA framework were deter-
mined to be maximum with a reduced False Positive rate [15].
Then, a Hop Count Filter Approach (HCFA) was contributed to
strengthening the process of detecting DDoS attacks through the
benefits of SDNs [16]. This HCFA scheme was determined to
ensure maximum protection by blocking spoofed packets from
the cloud with improved response and Detection Accuracy rate.
This HCFA scheme was estimated to enhance the response rate
to a maximum of 98.21% compared to the DELTA and Athena
mitigation methods of the literature. The Precision and Recall
values with minimized False Positive rate were identified due to
the derivation of the hop count filter that aids in the accurate
classification of data traffic flows into normal and malicious. A
Bloom Filter-based DDoS Control Framework Model (BF-DCFM)
was proposed for inclusion into the SDN for defeating the issues
that are introduced due to the inclusion of DDoS attacks in the
cloud environment [17]. To be specific, this BF-DCFM was capable
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f resolving the crucial issues of the link flooding category of
DoS attacks. This BF-DCFM method of integrating bloom filter
nd SDN utilized two modules for detecting link flooding cate-
ory of DDoS attacks in order to facilitate maximum detection
ccuracy with minimized overhead. The response time enabled
y this BF-DCFM was also maximum since it is able to achieve
igher Precision and Recall values. A FRESCO-based Detection
echanism (FRESCODM) for handling DDoS attacks was con-

ributed for determining malicious flow using the benefits of
uzzy mapping tool [18]. This FRESCODM approach was proposed
or handling DDoS attacks in any category of OpenFlow scenario
uch that benefits of click under data traffic monitoring is sus-
ained to the maximum degree. A Trusted Random Walk-based
uzzy Logic Imposed Detection Mechanism (TRW-FLIBDM) was
roposed for significant detection of DDoS attacks in the cloud
nvironment [19]. The trusted randomwalk aimed at categorizing
he data traffic flow in a significant manner such that appropri-
teness in classifying data traffic is enhanced phenomenally. The
esponse rate of TRW-FLIBDM was determined to be maximized
n par with the BF-DCFM and FRESCODM schemes of the litera-
ure. Finally, the authors also proposed a Fuzzy Self Organizing
ap-based SDN detection Mechanism (FSOM-SDNDM) for en-
ancing the rate of estimating data traffic flows in the cloud into
ormal and malicious [20]. This FSOM-SDNDM is an improved
eural network model that is an enhancement over the classi-
al Kohenen network based on its dynamic property with the
nhanced process of reactively updating fuzzy rules. The FSOM-
DNDM approach incorporates fuzzy rules for investigating the
erspectives of input space for mapping them into single-valued
utput in order to facilitate the option of DDoS attacks in the
loud environment. The incorporation of control plane benefits
n SDN was determined to improve the attack response approach
n this FSOM-SDNDM approach to the maximum level compared
o the existing FRESCODM and TRW-FLIBDM schemes. The Clas-
ification Accuracy and Precision of this FSOM-SDNDM approach
ere estimated to be 94% and 93.87% under its evaluation with
he different intensities of false positive rates.

A Dual address entropy-based DDoS attack detection and de-
ense scheme was proposed with the merits of cognition-based
omputing that classifies malicious data flows from normal data
lows [21]. This dual address entropy detection scheme was pro-
osed with the merits of extracting the flow table characteristics
nd attack models that are constructed with the benefits of sup-
ort vector machine. It was proposed with the properties that
ealize the detection and mitigation process that can restore
ormal communication in a real-time scenario. The results of
his dual address entropy detection scheme confirmed a low
alse positive rate and high detection rate. The time incurred in
he recovery of the DDoS attack facilitated by this scheme was
lso determined to be better than the existing algorithms of the
iterature. An Advanced Support Vector Machine (ASVM)-based
DoS defense scheme was proposed as an SDN-based strategy
hat performed multi-classification of data traffic flows [22]. It
as proposed for the successful detection of two categories of

looding-based attacks. It utilized the predominant features of
symmetric and volumetric for minimizing the training and test-
ng time involved in the data traffic classification process. The
esults of this AVSM-based DDoS defense scheme confirmed bet-
er accuracy of 97.21%, a detection rate of 98.38% and a reduced
alse alarm rate of 11.49%, compared to the baseline schemes.

In addition, the SNORT intrusion detection system for DDoS
ttack detection was proposed with the benefits of networking
perating systems and an Open Daylight-based controller for bet-
er discrimination between data traffic flows [23]. This mitigation
pproach used Wireshark for bombarding the data traffic towards

he controllers in order to perform evaluations of packets in the
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SDN controller. This SNORT approach was determined to be better
in terms of reducing the percentage of packet loss, round trip
time, and time incurred in detecting DDoS attacks at the SDN
controller. It was identified to incur minimum time in detecting
successful DDoS attacks in the SDN network. An integrated DDoS
defense mechanism was proposed using the machine learning
algorithms such as random forest, decision tree, MLP, and SVM
for classifying malicious data traffic and normal data flows [24].
The proposed defense scheme utilized the merits of the Scapy
tool for simulating DDoS attacks based on the acquirement of a
valid list of IPs. This context defense scheme attained the best
accuracy and optimal processing time with respect to random
forest and decision algorithm implementation. It was considered
to be potent in classifying DDoS attacks by capturing the most
significant features that aided in classifying bandwidth attack,
flow-table attack, and controller attack from the complete set
of data traffic flows that propagates through the SDN controller.
An SDN-based DDoS attack detection scheme was proposed for
exploring the features in order to minimize the data bias involved
in the detection process [25]. The potential of the defense scheme
was explored using the dataset of Knowledge Discovery and Data
Mining Tools Competition (KDDCUP) 99 datasets confirmed better
performance compared to SVM in the SDN network [26].

Extract of the literature
The main limitations of the existing works of the literature

that motivated the formulation of the proposed RMPSOM en-
forced DDoS Attack Prevention Mechanism are presented as fol-
lows.

(i) Most of the existing self organizing schemes failed in utiliz-
ing a constant learning rate that has the possibility of pre-
venting the impotent selection of monotonically decreased
function that decreases the accuracy in detection.

(ii) The classification accuracy achieved by most of the learning
algorithms-based DDoS defense scheme was considered to
still possess a room for improvement.

(iii) The existing works of the literature failed to consider the
predominance of the neighboring neurons during the de-
tection process that classifies malicious traffic from normal
traffic.

. Proposed RMPSOM enforced DDoS attack prevention mech-
nism

This proposed RMPSOM is an attempt for enhanced preven-
ion of DDoS attacks in the cloud space facilitated through the
nvestigation of the data traffic flow based on periodic moni-
oring achieved by the SDN control plane. The SDN-based DDoS
revention is determined to be effective since they are potential
n estimating the deviation between the normal data traffic and
alicious data traffic. This proposed RMPSOM uses the bene-

its of Rival Penalized SOM which is improved phenomenally
rom the traditional SOM approach by resolving the issues of de-
reasing function and learning rate selection in DDoS prevention.
he nomenclature of symbols and their definitions used in this
roposed RMPSOM are tabulated in Table 1.
In this proposed RMPSOM, the neurons are employed in the

rocess of estimating the Euclidean distance between the actual
ata traffic with the expected data traffic in order to prevent
DoS attacks in the cloud space. On the entire SOM-based neuron
ap r × s, the process of investigation starts with the random

selection of input f (t) derived from the data flow traffic. Initially,
the neurons of the RMPSOM are assigned with a weight vector
pi = {pi1, pi2, . . . ., piD} such that the dimensions of the weight
and the randomly selected input are the same. The core objective

of this proposed RMPSOM is to focus on the neuron whose weight
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able 1
omenclature of symbols and its definition used in RMPSOM.
Nomenclature Meaning

obj(val) Objective function of the proposed RMPSOM
f (t) Random selection of input
pi Weight vector
Nk,i(t) Neighborhood kernel
β(t) and κ(t) Learning factors
TP Period of training
Farthest(Succ(obj(val))) Farthest proximity neurons
Nearest(Succ(obj(val))) Nearest proximity neurons
α(p,q) Learning factor of the closest neuron
Rank(i) Ranking of neurons based on Euclidean

distance
∥yk − yi∥2 The formula used in estimating the Euclidean

distance
ηi Relative successive neuron
λi Date rate
q Close proximity neuron
Cd(p,q) Closest distance of the near located neuron
Nk,q(t) Weight of the close proximity neuron ‘rival

neuron’ and its closest neighborhood neurons

vector is very close to the considered input vector evaluated in
terms of Euclidean Distance. Then, two potential variables such as
step and epoch variable are assigned to 1 when the weight vec-
tors are randomly initialized. The core objective of this proposed
RMPSOM is iterated until the stop condition is not satisfied based
on the constraint derived from Eq. (1)

obj(val) = arg( Min
t≤i≤min

{∥pi(t) − f (t)∥}) (1)

Then, the weights and their associated neighbors are updated
ased on Eqs. (2) and (3)

i(t + 1) = pi(t) + Nk,i(t)[f (t) − pi(t)] (2)

and

Nk,i(t) = β(t) ∗ (−
∥yk − yi∥
2κ2(t)

) (3)

This neighborhood kernel represented in Eq. (3) is selected
based on a Gaussian function defined in [27]. This process of up-
dating weights and related neighbors is facilitated with increased
time and epochs until the epoch terminates or the mapping con-
verges to an optimal point. Further, the potential learning factors
such as β(t) and κ(t) decrease monotonically based on Eqs. (4)
and (5)

β(t) = β(0) ∗ (
β(Tp)
β(0)

)
τ
TP (4)

K (t) = K (0) ∗

(
K
(
Tp
)

K (0)

) τ
Tp

(5)

where TP is the period of training, which is used in the pro-
cess of updating weights and estimating neighborhood value in
the utilized RMPSOM. However, the selection of accurate and
monotonically decreasing function decreases the potential of the
utilized RMPSOM mechanism. Thus, the proposed RMPSOM en-
forced DDoS Attack Prevention Mechanism utilizes the constant
learning rate for training the neurons of SOM towards malicious
traffic detection. This utilization of the constant learning rate
aids in preserving the topology in order to minimize the degree
of quantization error and maximum utilization of the neurons.
In this constant learning rate-based RMPSOM mechanism, the
nearest and farthest proximity neurons in the close neighborhood
of the successor neuron are initially computed based on Eqs. (6)
and (7) respectively.

Farthest(Succ(obj(val))) = arg( Max {∥pi(t) − f (t)∥}) (6)

t≤i≤min
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Nearest(Succ(obj(val))) = arg( Min
t≤i≤min

{∥pi(t) − f (t)∥}) (7)

Then, a unique rank is assigned to each of the neurons based
n the distance estimated from the input considered for investi-
ation. The unique rank of 0 is assigned to the optimal successor
euron if it is very close to the neighborhood of the input vec-
or considered for analysis. Otherwise, the value of the optimal
uccessor neuron is incremented monotonically in increments of
depending on the proximity of its location to the input vector
onsidered for investigation.
Further, the weights of the successor neuron and their closest

eighborhood neurons are updated based on Eqs. (8) and (9)

k,i(t) = β(t) ∗ (1 − ηi) ∗ exp(−
α(p,q)

2κ2(t)
) (8)

α(p,q) = Rank(i) + (∥yk − yi∥2
+ Cd(p,q)) (9)

In this context, the value of the relative successive neuron
i is computed based on Eq. (10) such that the weights of the
uccessor neuron and their closest neighborhood neurons are
etermined in a reactive manner. This reactive estimation of
eights aids in the better categorization of traffic data flows into
ormal and malicious based on the computation of the rate of
ata (λi) forwarded from the source to the destination in the
loud environment. Moreover, the value of (1 − ηi) must lie
between 0 and 1.

ηi =
λi∑k
i=1 λi

(10)

In addition, the weight of the close proximity neuron ‘q’ (rival
neuron) and its closest neighborhood neurons are computed by
modifying Eqs. (2) and (3) into Eqs. (11) and (12) respectively.

pi(t + 1) = pi(t) + Nk,i(t)[f (t) − pq(t)] (11)

and

Nk,q(t) = β(t) ∗ (1 − ηi) ∗ exp(−
α(p,q)

2κ2(t)
) (12)

where, α(p,q) is the learning factor of the closest neuron deter-
mined based on Eq. (13)

α(p,q) =
(pq(t) − f (t))

2 + Cd(p,q) (13)

This process of updating weights and related neighbors is also
enabled until the epoch terminates or the mapping converges to
an optimal point. However, the second successive neuron (rival
neuron) cannot be considered as the farthest possible proximity
neurons since it violates the intrinsic characteristics of Self Orga-
nizing Maps (SOM). The learning factor α(p,q) is considered to be
kept constant in order to ensure better accuracy in the discrimi-
nation process of the data traffic flow into normal and malicious.
Thus, the proposed RMPSOM-SDNDM scheme is adaptive and
capable of selecting various numbers of rivals that closely possess
similar features of the successor neuron for penalizing their asso-
ciated models. The penalization in the associated models of rival
neurons is imposed only over the real vector parameters whose
dimensions are very similar to the considered input vector. The
constant learning rate enabled in the proposed RMPSOM-SDNDM
scheme prevents or eliminates the possibility of selecting the
inessential learning rate function that monotonically decreases
without converging to an optimal detection.

4. Simulation results and investigation

In this section, the role of the proposed RMPSOM-SDNDM
in the effective and efficient prevention of DDoS attacks on the
cloud environment is investigated using the test cases that are
uniquely designed with realistic and trustworthy key features
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Table 2
RMPSOM-SDNDM scheme-Predicted flow count for testing and training.
Category of DDoS Attack Flow count used for the testing

process
Flow count used for the training
process

Flooding attack using TCP SYN packets 157812 6324
100 bytes packet size-based UDP flooding attack 52278 2819
200 bytes packet size-based UDP flooding attack 337896 –
400 bytes packet size-based UDP flooding attack 41067 4251
800 bytes packet size-based UDP flooding attack 128792 –
60 bytes packet size-based ICMP flooding attack 59213 –
1024 bytes packet size-based ICMP flooding attack 57235 5332
specified in [28–30]. The potential of the proposed RMPSOM-
SDNDM is compared with the baseline DDoS attack prevention
techniques such as FSOM-SDNDM, BF-DCFM, FRESCODM, and
TRW-FLIBDM. The benchmarked schemes of FSOM-SDNDM, BF-
DCFM, FRESCODM, and TRW-FLIBDM are chosen for investigation
because they are determined to be the existing novel schemes
that motivate the requirement of the fuzzy neural network in
the rapid and reliable prevention of the DDoS attacks in the
cloud computing environment. These benchmarked approaches
are adaptive and dynamic in exploring and exploiting the pos-
sibilities involved in the process of training and testing that
helps in the potential classification of the data traffic flows into
normal and malicious data traffic. These baseline DDoS attacks
prevention approaches have also potential in using Self Organiz-
ing Maps for accuracy estimation and derivation of training rules
that motivate towards the distinct categorization and prevention
of unwanted data traffic before exhausting the scarce resources
of the cloud environment [31].

This comparative investigation of RMPSOM-SDNDM with the
ompared FSOM-SDNDM, BF-DCFM, FRESCODM, and TRW-
LIBDM schemes is facilitated using five influential traffic flows
haracteristic such as Average Time incurred Per Flow (ATPF),
ercentage of Average Flow Pairs (PAFP), Growth Rate Per Flows
GRPF), Average Byte Per Flow Count (ABPFC) and Average packet
er flow count (APPFC) since they are considered as the influen-
ial factors that need to be investigated for SDN-based DDoS at-
ack prevention mechanism [31]. In this investigative process, the
forementioned traffic flows characteristics are collected through
he incorporation of the flow aggregation module embedded in
he utilized NOX related network. These aggregated traffic flow
eatures are explored by the classifier module of NOX in order to
nable the activity of traffic flow analysis, such that illegitimate
ata flows are effectively detected through the implemented
MPSOM-SDNDM scheme.
In this investigative process of the proposed RMPSOM-SDNDM

cheme, different categories of malicious and legitimate traffic
eatures are integrated together for achieving predominant test-
ng. The legitimate data traffic generated and utilized in the
rocess of testing comprises 80% of TCP packets, 10% of ICMP
ackets, and 10% of UDP packets. The testing data and training
ata traffic parameters are similar in order to investigate the
otential of the proposed RMPSOM-SDNDM scheme. FTP con-
ections are established for collecting and investigating 80% of
CP packets since they portray the continuous process of data
issemination maintained between the server and the client in
he cloud computing environment. The remaining 10% of ICMP
ackets and 10% of UDP packets are gathered and analyzed using
he establishment and maintenance of Telnet connections. Telnet
onnections are mainly used for generating and disseminating
reduced amount of data packets with maximum inter-arrival

ime ensured between them. In this investigation of the pro-
osed RMPSOM-SDNDM scheme, the Stacheldraht tool is used
or generating and analyzing data traffic considered for detecting
DoS attacks in the cloud environment. The predicted number

f flows that are utilized for the training and testing process
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of the proposed RMPSOM-SDNDM scheme under the impact of
diversified categories of DDoS attacks are listed in Table 2.

The experimental emulation conducted during the process of
testing and training of the proposed RMPSOM-SDNDM scheme
is facilitated with the help of the server, which is configured
using 16 GB RAM memory capability enhanced by Intel Quad-
Core Xeon processor. In this experimental investigation of the
proposed RMPSOM-SDNDM scheme, the NOX oriented network
script is updated with the aid of the wire filter entity such that
significant parameters such as bandwidth and delay of 1 Gbps and
20 ms are maintained for sustaining the link existing between the
networks [20]. In this experimental investigation of the proposed
RMPSOM-SDNDM scheme, approximately 107500 flows are ini-
tiated during the process of training with the maximum of 48000
flows and 61000 flows monitored and evaluated at the influence
of trustworthy data traffic and in between the time of generating
malicious data traffic.

Initially, Fig. 1 unveils the comprehensive attacker source
topology with various attacker sources that are responsible for
introducing a DDoS attack into the SDN-based cloud computing
environment. In this attacker source topology, Attacker 1 intro-
duces TCP, UDP, or ICMP packets for introducing the flooding-
based DDoS attacks. Likewise, Attacker 2 uses the Legitimate IP
packets for compromising the network. Further, Attacker 3 uses
the Botnets for facilitating malicious behavior into the network.
In addition, Attacker 4 is responsible for introducing malicious
data traffic network into the SDN-based network using DNS or
IP spoofing. The SDN included in the network topology is mainly
for enhancing the degree of manageability, scalability, Adaptiv-
ity, and controllability. Fig. 2 exemplars the test-bed topology
incorporated in the SDN-based cloud environment used for im-
plementing the proposed RMPSOM-SDNDM scheme. The Virtual
Router Firewall (VRF) present in the considered testbed is respon-
sible for connecting the internet with the physical infrastructure
of the SDN-based cloud. The VRF present in this test-bed topology
is capable of permitting HTTP and HTTPs protocols based on the
utilization of two load balancers LB1 and LB2. These LB1 and LB2
load balancers are embedded in the application servers that are
inherently and potentially hosted in the VMware for effective
processing and detection.

To be specific, Load balancer LB1 is mainly utilized for bal-
ancing the number of HTTP and HTTPs connections that aids
in connecting the internet and the web servers residing in the
multiple VM1, VM2, and VM3 entities that are in turn connected
to the main VMware virtual machine. Load balancer LB2 is re-
sponsible for connecting three database clusters such as C1, C2,
and C3 for ensuring direct interaction with the core database. In
addition, the storage area network is connected with the VMware
virtual machine infrastructure-based on the iSCSI (Internet Small
Computer Systems Interface) protocol.

The experiments conducted for investigating the performance
of the proposed RMPSOM-SDNDM scheme are three folded. First,
the significance of the proposed RMPSOM-SDNDM scheme is
analyzed using percentage accuracy in detection with the per-

centage increase in the False Positive rate by increasing the data
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Fig. 1. Comprehensive Attacker Source Topology utilized for implementing the proposed RMPSOM-SDNDM scheme.
rates from 100 Mbps to 500 Mbps varied in increments of 100.
Further, the potential of the proposed RMPSOM-SDNDM scheme
is quantified using False Negative rate, True Positive rate, and
True Negative rate evaluated under a different increase in data
rates from 100 Mbps to 500 Mbps varied in increments of 50.
In addition, the investigation of the proposed RMPSOM-SDNDM
scheme is facilitated using True Positive rate by varying the data
rates from 50 Mbps to 500 Mbps with the False Positive rate
varying from 15%, 30%, and 45% respectively.

Initially, Figs. 3–7 highlight the significance of the proposed
RMPSOM-SDNDM scheme using percentage accuracy in detection
by varying the percentage of the False Positive rate from 0% to
75% in increments of 5% under the influence of 100 Mbps, 200
Mbps, 300 Mbps, 400 Mbps and 500 Mbps data rate respectively.
Fig. 3 emphasizes that the percentage increase in Detection Accu-
racy of the proposed RMPSOM-SDNDM scheme under 100 Mbps
data rate is determined to be 17%–21% better when compared to
FSOM-SDNDM, 12%–15% superior to BF-DCFM, FRESCODM, and
9%–13% excellent than TRW-FLIBDM schemes. Similarly, Fig. 4
depicts that the percentage increase in Detection Accuracy of the
proposed RMPSOM-SDNDM scheme under 200 Mbps data rate
is determined to be 19%–23% better when compared to FSOM-
SDNDM, 14%–17% superior to BF-DCFM, FRESCODM, and 11%–14%
excellent than TRW-FLIBDM schemes.

Further, Fig. 5 exemplars that the percentage increase in De-
tection Accuracy of the proposed RMPSOM-SDNDM scheme un-
der 200 Mbps data rate is determined to be 20%–24% better
when compared to FSOM-SDNDM, 15%–19% superior to BF-DCFM,
FRESCODM, and 13%–16% excellent than TRW-FLIBDM schemes.
Furthermore, Fig. 6 depicts that the percentage increase in Detec-
tion Accuracy of the proposed RMPSOM-SDNDM scheme under
200 Mbps data rate is determined to be 22%–25% better when
compared to FSOM-SDNDM, 16%–18% superior to BF-DCFM, FRES-
CODM, and 14%–16% excellent than TRW-FLIBDM schemes. In
addition, Fig. 7 quantifies that the percentage increase in Detec-
tion Accuracy of the proposed RMPSOM-SDNDM scheme under
200 Mbps data rate is determined to be 24%–27% better when
compared to FSOM-SDNDM, 19%–21% superior to BF-DCFM, FRES-
CODM, and 15%–18% excellent than TRW-FLIBDM schemes. From
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Fig. 2. The test-bed topology incorporated in the SDB-based cloud environment
for implementing the proposed RMPSOM-SDNDM scheme.

this investigation, it is very clear that the Detection Accuracy
of the proposed RMPSOM-SDNDM scheme is improved on par
with the baseline DDoS mitigation schemes even under increasing
variation in the data rate. This predominant enhancement in
Detection Accuracy is mainly due to the incorporation of the
constant learning rate that aided in preserving the topology for
minimizing the degree of quantization error and maximum uti-
lization of the neurons. This quantifiable improvement in the
Detection Accuracy is also facilitated by the proposed RMPSOM-
SDNDM scheme through the utilized process of updating weights
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Fig. 3. Proposed RMPSOM-Detection Accuracy-varying False Positiveness (100
Mbps).

Fig. 4. Proposed RMPSOM-Detection Accuracy-varying False Positiveness (200
Mbps).

Fig. 5. Proposed RMPSOM-Detection Accuracy-varying False Positiveness (300
Mbps).

and related neighbors, which are adaptively improved to periodic
increase in time and epochs until the epoch terminates or the
mapping converges to an optimal point.
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Fig. 6. Proposed RMPSOM-Detection Accuracy-varying False Positiveness (400
Mbps).

Fig. 7. Proposed RMPSOM-Detection Accuracy-varying False Positiveness (500
Mbps).

In this second process of investigation, Figs. 8–10 highlight
the predominance of the proposed RMPSOM-SDNDM scheme in
terms of the percentage decrease in False Negative rate, the
percentage increase in True Positive rate and percentage increase
in True Negative rate evaluated under the impact of varying data
rates. Fig. 8 confirms that the percentage decrease in the False
Negative rate of the proposed RMPSOM-SDNDM scheme is mainly
due to the utilization of the learning rate, which is kept constant
independent of the flow count monitored for analyzing DDoS
attacks in the cloud environment. Thus, the proposed RMPSOM-
SDNDM scheme reduced the False Negative rate on an average by
10%, 12%, 15%, and 18%, on par with the compared FSOM-SDNDM,
BF-DCFM, FRESCODM, and TRW-FLIBDM schemes. Figs. 9 and 10
inferred that the True Positive rate and True Negative rate are
increased by the proposed RMPSOM-SDNDM scheme since they
are capable of discriminating the traffic flows into normal and
malicious based on the assignment of unique rank to each neu-
ron through the estimated distance determined from the input
data traffic flows. Hence, the proposed RMPSOM-SDNDM scheme
increases the True Positive rate on an average by 13%, 16%, 18%
and 21% on par with the compared FSOM-SDNDM, BF-DCFM,
FRESCODM, and TRW-FLIBDM schemes. In addition, the proposed
RMPSOM-SDNDM scheme increased the True Negative rate on
an average by 7%, 10%, 13%, and 15% on par with the compared

FSOM-SDNDM, BF-DCFM, FRESCODM, and TRW-FLIBDM schemes.
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Fig. 8. Proposed RMPSOM-percentage increase in False Negative.

Fig. 9. Proposed RMPSOM-percentage increase in True Positive.

Finally, the proposed RMPSOM-SDNDM scheme is evaluated
using True Positive rate by varying the data rates from 50 Mbps
to 500 Mbps in increments of 50 Mbps with the False Positive
rate varying from 15%, 30%, and 45% respectively. Figs. 11, 12,
and 13 unveil the True Positive rate of the proposed RMPSOM-
SDNDM scheme quantified under varying intensities of 15%, 30%,
and 45% in False Positive rates. Fig. 11 proved that the True
Positive rate of the proposed RMPSOM-SDNDM scheme under
15% intensity of False Positive rate is maximum up to a level of
0.92 which is nearly 7%, 9%, 12%, and 15% greater than the bench-
marked FSOM-SDNDM, BF-DCFM, FRESCODM, and TRW-FLIBDM
schemes. Similarly, Fig. 12 ensured that the True Positive rate of
the proposed RMPSOM-SDNDM scheme under 30% intensity of
False Positive rate is maximum up to a level of 0.89 which is
approximately 6%, 8%, 10%, and 13% excellent than the baseline
FSOM-SDNDM, BF-DCFM, FRESCODM, and TRW-FLIBDM schemes
considered for analysis.

In addition, Fig. 13 clarified that the True Positive rate of the
proposed RMPSOM-SDNDM scheme under 45% intensity of False
Positive rate is maximum up to a level of 0.86 which is ap-
proximately 5%, 9%, 12%, and 15% predominant to the compared
FSOM-SDNDM, BF-DCFM, FRESCODM and TRW-FLIBDM schemes

considered for investigation. m
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Fig. 10. Proposed RMPSOM-percentage increase in True Negative.

Tables 3–5 are presented for portraying the predominant
results of the proposed RMPSOM-SDNDM scheme over the com-
pared FSOM-SDNDM, BF-DCFM, FRESCODM and TRW-FLIBDM
schemes using Precision, Recall, and Optimality rate evaluated
under different data rates varying from 100 Mbps to 500 Mbps.
This investigation is essential because the techniques contributed
to detecting and preventing DDoS attacks in cloud environment
need to be more precise with potent recall value and optimality
rate [31].

The results highlighted in Tables 3, 4, and 5 proved that the
Precision, Recall, and Optimality rate of the proposed RMPSOM-
SDNDM scheme are enhanced on an average by 10%, 8% and 9%
compared to the baseline FSOM-SDNDM, BF-DCFM, FRESCODM
and TRW-FLIBDM schemes used for analysis.

The reasons behind the potential performance of the proposed
RMPSOM-SDNDM scheme over the benchmarked schemes are
listed as follows.

(i) The use of rival penalized SOM minimized the failure rate
of the classifier that segregated malicious data traffic and
normal data traffic flows.

(ii) It attained a better classification function despite the uti-
lization of a monotonically decreasing function that gener-
ally leads to poor convergence.

(iii) The inclusion of constant learning rate increased the prob-
ability of selecting an accurate and reliable learning rate
function that increases the accuracy degree to the expected
level.

. Conclusions

The proposed RMPSOM-SDNDM scheme was contributed for
DN-based DDoS attack prevention scheme in order to attain
apid and accurate detection with the benefits of rival penalized
OM and constant learning rate. It included the merits of the con-
tant learning rate that opened wide the probability of selecting
n accurate and reliable learning rate function. This learning rate
sed in RMPSOM included a monotonically decreasing function
hat attained robust performance by converging to an optimal
oint of detection. It categorized data flows into normal and
alicious based on the weight of the neuron whose weight vector

s very close to the Euclidean distance of the considered input
ector. The simulation results of the proposed RMPSOM-SDNDM
cheme proved that the Detection Accuracy under varying data
ates from 100 Mbps to 500 Mbps is improved over the bench-

arked approaches by a significant mean margin of 18%. The
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Fig. 11. Proposed RMPSOM-percentage increase in True Positive rate (intensity of False Positive rate—15%).
Fig. 12. Proposed RMPSOM-percentage increase in True Positive rate (intensity of False Positive rate—30%).
Table 3
Proposed RMPSOM-SDNDM evaluated using precision value.
DDoS prevention schemes Precision Value under varying data rates

100 Mbps 200 Mbps 300 Mbps 400 Mbps 500 Mbps

Proposed RMPSOM-SDNDM 0.982 0.980 0.989 0.987 0.989
FSOM-SDNDM 0.967 0.963 0.956 0.965 0.968
BF-DCFM 0.945 0.949 0.952 0.954 0.958
FRESCODM 0.932 0.936 0.938 0.942 0.945
TRW-FLIBDM 0.921 0.927 0.932 0.931 0.937
150
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Fig. 13. Proposed RMPSOM-percentage increase in True Positive rate (intensity of False Positive rate—45%).
Table 4
Proposed RMPSOM-SDNDM evaluated using recall value.
DDoS prevention schemes Recall Value under varying data rates

100 Mbps 200 Mbps 300 Mbps 400 Mbps 500 Mbps

Proposed RMPSOM-SDNDM 0.986 0.985 0.982 0.984 0.980
FSOM-SDNDM 0.953 0.952 0.951 0.948 0.941
BF-DCFM 0.945 0.939 0.931 0.928 0.924
FRESCODM 0.932 0.931 0.928 0.921 0.918
TRW-FLIBDM 0.913 0.910 0.908 0.909 0.912
Table 5
Proposed RMPSOM-SDNDM evaluated using optimality value.
DDoS prevention schemes Optimality Value under varying data rates

100 Mbps 200 Mbps 300 Mbps 400 Mbps 500 Mbps

Proposed RMPSOM-SDNDM 0.976 0.974 0.972 0.970 0.965
FSOM-SDNDM 0.943 0.942 0.940 0.935 0.932
BF-DCFM 0.932 0.930 0.927 0.925 0.922
FRESCODM 0.912 0.916 0.910 0.908 0.909
TRW-FLIBDM 0.893 0.892 0.891 0.883 0.873
False Positive rate, True Positive rate, and True Negative rate
of the proposed RMPSOM-SDNDM scheme are minimized on
an average of 11.25% compared to the schemes considered for
investigation. The results also confirmed that the Precision, Recall,
and Optimality rate of the proposed RMPSOM-SDNDM scheme
are enhanced on an average by 10%, 8%, and 9% compared to
the baseline schemes used for analysis. In the near future, it
is also planned to formulate a fuzzy TOPSIS-based DDoS attack
detection scheme that explores possible parameters that could be
considered in the process of mitigating its influence on the SDN
network.
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