
Advances in Engineering Software 169 (2022) 103128

Available online 7 May 2022
0965-9978/© 2022 Elsevier Ltd. All rights reserved.

Load balancing in cloud environment using enhanced migration and
adjustment operator based monarch butterfly optimization

R. Kaviarasan a, P. Harikrishna a,*, A. Arulmurugan b

a Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal, Andhra Pradesh, India
b Department of CSE, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, Andhra Pradesh, India

A R T I C L E I N F O

Keywords:
Cloud computing
Meta heuristic
Bio inspired
Load balancing

A B S T R A C T

In the decades before the advent of computers, humans tend to make mistakes while calculating and remem
bering tasks. Distributed computing helped to reduce the workload of each computer by distributing the
workload evenly among computers connected in the network. Cloud computing have eradicated most of the
problems that occurred in distributed computing but were also prone to different types of issues. Major issues in
cloud computing relate to security and load balancing. Load balance of a node relates to two important pa
rameters namely request time and response time. Meta heuristics algorithms can be used to provide proper load
balancing techniques in cloud. This paper provides a mechanism namely EMAMBO to ensure that each node is
properly load-balanced in cloud. Based on different metrics considered, it could be inferred that the proposed
system fares better when compared to different benchmarked existing systems.

1. Introduction

Before the invention of computers, the life of the human beings was
found to be challenging. It is a well- known fact that computer has
drastically improved its user’s capability in doing complex calculation
and storing data. Even computers have limitation in storage and
computation power which led to distributed computing. In case of
distributed computing [1,2], a huge task is divided into sub tasks. These
sub-tasks are given to computers that are connected over a network. So,
some of the advantages of using distributed computing is Flexibility,
Scalability, Fault tolerance and Reliability. But there were also several
drawbacks like security, multiple points of failure. One of the most
commonly used variant of distributed is Cloud computing.

Cloud computing [3] provides different types of services to user
based on his demand/ request. So these resources requested by the users
are shared to them with the help of network (most preferably Internet).
As soon as the task with that resource is completed, the user may return
the resource and he/she will be charged only for the duration of the use
of resource. This technique is similar to our electricity bill and is known
as pay-per-use technology. Companies like Google, Amazon, and
Microsoft provides different types of Cloud based services. These com
panies are collectively known as Cloud Service Providers [4,5]. The
advantages of cloud computing [6] are Flexibility, Accessibility, easier

implementation and lower cost. The disadvantages of cloud computing
are over dependence on internet, security, compliance concern and
limited control. Some of the challenges faced by companies can be
solved when the shift their data from their Classical Data Center [7] to
Cloud. These challenges include Storage growth, cost of ownership,
Globalization and ageing data centers.

The following are the characteristics of Cloud computing[8]

1. On Demand Self Service: In the case of cloud computing, if a user
requires any computing resource he/she can just demand it. Based on
the user’s request the resource will be allocated by the CSP.

2. Broad Network Access: Cloud computing is not restricted to desk
tops, but to different types of devices like laptop, tablets and smart
phones as long as they have a proper internet connection.

3. Resource Pooling: The resources are pooled so as to able to cater the
needs of multiple users at the same time. This is known as multi-
tenant model. These resources will be allocated based on the user’s
demand.

4. Rapid Elasticity: Resource can be allocated and de-allocated to a user
in a simple and faster manner. There are some Cloud Service Pro
viders (CSP) where this process is done automatically based on the
demand.

* Corresponding author.
E-mail address: pillutlaharikrishna@yahoo.co.in (P. Harikrishna).

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

https://doi.org/10.1016/j.advengsoft.2022.103128
Received 27 January 2022; Received in revised form 26 March 2022; Accepted 20 April 2022

mailto:pillutlaharikrishna@yahoo.co.in
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2022.103128
https://doi.org/10.1016/j.advengsoft.2022.103128
https://doi.org/10.1016/j.advengsoft.2022.103128
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103128&domain=pdf

Advances in Engineering Software 169 (2022) 103128

2

5. Measured Service: In cloud, the CSP will monitor or measure the
service provided to the user. This measuring can be for billing as well
as to make sure that the resource is being properly utilized.

There are three types of cloud namely public, private and hybrid. In
case of a public cloud [9], the services are available for the public users.
Companies like Amazon, Google and Microsoft can be used to avail this
type of cloud. Private Cloud [10] is opposite of public cloud. The private
cloud is available to users of a particular organization. Hybrid cloud
[11] is the combination of both public and private cloud. Then there are
several services provided by Cloud out of which there are three which
are mostly commonly used. They are SaaS (Software as a Service), PaaS
(Platform as a Service) and IaaS (Infrastructure as a Service). In SaaS
[12], the service provided is the software. The main difference between
a traditional software and a SaaS is that there is no need to install and
purchase the software in SaaS. The best example of SaaS is Google docs.
In PaaS [13], the service delivered is a platform in which a user can
create, design and manage his/her own software. The example of PaaS is
Windows Azure. In IaaS [14], the service provided is physical infra
structure like compute, storage and networking components as well as
load balancing. The example of IaaS is Rackspace.

Security and optimization play an important role in better utilizing
the cloud [15]. Some of the security issues in Cloud are Denial of Service
attacks, Distributed Denial of service attack [16], Advanced Persistent
Threat and misusing of cloud resources. To overcome these threats there
are several countermeasures that are available like Authentication,
Authorization, IDPS (Intrusion Detection and Prevention System), Trust
modeling and Firewall.

The advent of Cloud computing has benefited the mankind in many
ways in terms of less cost which minimizes capital expenditure of a
company, provides better security when compared with other
computing platforms and the business data that can be stored in the
cloud will be a good source of back up during disaster and the organi
zation need not depend upon the hardware or software utilities for their
company exclusively when they migrate to cloud.

One of the objectives of cloud computing is to make sure that the
computing resources are properly utilized. One method to perform it is
by Optimization methods. There are several bio inspired optimization
algorithms like Ant Colony optimization [23], Bee Hive optimization,
Particle Swarm Optimization, Monarch Butterfly optimization and Kill
Herd optimization. This paper main objective is to make sure that the
cloud resources are properly utilized to the fullest extent.

The task scheduling is the major concern in cloud computing envi
ronment which degrades the system performance. To improvise the
system performance we must make use of effective load balancing al
gorithms. The major setbacks faced in task allocation are discussed
below:

Unpredictable workloads: This is a significant setback in cloud
computing as the workloads are generally unpredictable and the fluc
tuation in the workload can happen in a planned or unplanned manner.
In case of a planned fluctuation the excessive workload can be forecasted
well in advance and the allocation of resources will be done in a smooth
manner.

Guaranteed resource utilization: In spite of, an unplanned demand,
the resources must be allocated whenever a demand is created. This is
auto scaling mechanism in cloud environment. The incoming workload
should be allocated to the VM for effective resource utilization. This can
be achieved by effective scheduling methods to allocate the tasks to the
VM by analyzing the under loaded and overloaded nodes.

Presence of Hetro nodes in Data Center (DC): The nodes that are
distributed in different locations will vary in terms of computation ca
pacity, memory and network performance. The incoming tasks that are
allocated to various available hetro nodes and different tasks are per
formed by different capacity VMs.

Scheduling problem: The problems with respect to scheduling have
grown from processing a simple task in classical computing systems to

handling complex problems in VM in terms of resource scheduling and
migration in cloud environment.

The proposed work has been designed based on the inspiration of the
bio inspired behavior of the Monarch Butterflies. The highlight of this
paper includes:

a) The proposed work which is designed being a Meta-heuristic
approach doesn’t get struck into local optimum during the search
process and to find an optimal solution.

b) Monarch Butterfly being a population based search performs the
search process with random initial population and is enhanced over
the course of time.

c) Being population based search, the proposed work can move into
promising areas of search space thus the exploration rate is found to
be greater when compared to single solution based search
algorithms.

d) The shift in convergence is found to be uniformly maintained during
the exploration and exploitation.

e) The major improvement of this approach the throughput, response
time is found to improve and migration time, fault tolerance and
energy consumption is found to be minimized when compared to the
bench marks.

The organization of the paper is as follows: Section 2 describes about
the literature survey with various load balancing techniques with their
merits and demerits. Section 3 depicts the proposed work design. Sec
tion 4 tells about the simulation environment and the results inferred.
The last section tells about the conclusion and the future direction.

2. Literature survey

Cloud computing has gained the attention of the users in the recent
years. As this is a digital era and the industries consideration has been
grabbed by cloud computing environment because of sharing of
computing resources over the internet at a minimum cost. Luthur et al
designed a computing model based on the internet that helps in sharing
of hardware and software resources [17]. The cloud computing facili
tates virtualized sharing of files that laid the basics of load balancing and
sharing of the resources in an optimized manner. Cloud registered users,
access the stored files and resources through a methodology called vir
tualization. So, an effective resource sharing algorithm and load
balancing scheme has to be designed to handle effective file sharing

Several researchers have tried to afford load balancing methods in
the Hadoop environment. The Hadoop map reduces splits the given file
into two fixed blocks and each divided block has replicas on three
different nodes. Balancer a built in tool is used to move the data blocks
from the overloaded node to the less overloaded node. The purpose of
this tool is for balancing the cluster which consumes higher amount of
system resources. For this primary reason several new load balancing
approaches has been evolved.

A block based load balancing algorithm had been proposed by Kolb
et al. for minimizing the search space in the Entity-Resolution [18]. This
approach divides the input data into multiple blocks and prevents the
successive matching of the entities to the same block. This approach
takes the size of the block into consideration and assigns the entire block
to minimize the task without violating the load balancing limitations. It
had been experimented with the real time data set of Amazon EC2 cloud
computing environment and is found to be robust when compared with
data skew. It uses different size sub blocks which may create imbalance
in the reduce phase and it is also time consuming as it is using multiple
blocking keys. Another scheduling approach had been designed by Bok
et al. to handle multimedia data in MapReduce framework [19]. It also
utilizes replica of data approach if the load is found to be high for a node,
the replica node refers to other node that has the needed block available
to process the job. If the job is not able to be completed with the
deadline, then the most important job is selected and temporarily

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

3

suspending the ongoing process in order to minimize time deadline. This
approach is found to have an added advantage of minimized completion
time. But the major concern is that it doesn’t have implementation in
real map environment.

Another pioneer load balancing method in MapReduce had been
proposed by Kulkarni et al in which they had designed a scheduling
model to work in a heterogeneous environment [20]. It has a classifi
cation algorithm that is much more aware about the needs of the re
sources of the clusters and the job necessities which is needed for the
scheduler. The jobs in this approach are classified into two approaches
executable and non-executable. The executable jobs are assigned to the
proper nodes for successful execution and to evade failure rate. This
mechanism has added advantages like minimizing the overhead faced
by the master nodes and smaller job starvation has been avoided.
Identifying the content information is found to be more time consuming
with this approach.

Biological adopted phenomena’s are also been adopted by the re
searchers for balancing the load in the cloud environment [36]. These
algorithms had been created by mimicking the behavior of the Ant [37],
Honey bees, Cuckoo and Genetics.

Cloud computing has gained demand among the users because of the
merits of less cost and high availability. But still it has certain demerits in
terms of resource management and power utilization. Yakhchi, M et al.
has proposed a mechanism using a Bio inspired approach called Cuckoo
Search Algorithm (CSA) [21]. This algorithm is constructed based on the
behavioral inspiration of cuckoo bird. This bird has a peculiar behavior
of laying eggs in other birds nest. With this approach the population of
the cuckoo bird will increase in that particular area. At certain cases the
host birds identifies the cuckoo eggs and eliminate it. Generally
increasing in the number of eggs in an area would come up with sig
nificant profit value. The CSA has three different phases namely: (i)
detection of over utilized hosts (ii) detection of underutilized nodes and
(iii) selection policy regarding the nodes.

The over utilized node will not be able to handle the entire request
and as a result the time spent in replying the request will be high. So CSA
has been deployed to handle this situation. For solving the discrete
optimization problem the states has been changed from continuous state
to discrete state. Initially the host is selected randomly and the charac
teristic of the hosts are stored in an array called habitat. Then the CSA is
used for calculating the resource utilization using the profit utilization.
Then for each selected slots, the eggs are laid between 2 to 4 which is the
upper and lower bound which has been generated using Egg Laying
Radius (ELR). When a host is under loaded it means it can handle more
request and has more energy to serve the request. The under loaded
nodes are marked as per the selection policy, their request are migrated
to other nodes making them free and it is set to sleep, as a result the
energy consumption is minimized. The Minimum Migration Time policy
is used to select the nodes. The major con of this approach is SLA
avoidance and it does not concentrate more on the security policies for

VM migration.
Load balancing in cloud can be achieved using the foraging behavior

of the honey bees. The behavior in identifying the food source and
reaping it based on which the Honey Bee Algorithm is been proposed by
Dhinesh Babu et al. [22]. Generally in Bee hives, there will be Queen
Bee, Drone Bee and worker Bee. The function of the worker bee is used to
identify the food source and reach to the hive and intimate to other
worker bees through vibration dance. The dance has a message
regarding the quantity and quality of the food source and the distance
from the bee hive. Other foraging bees move in the direction of the
worker bees and reap the food. After returning to the hive it again makes
a vibration dance stating the information of how much food is left out
which results in further exploitation of the food source. Dinesh Babu
et al. relates the tasks as honey bees and the VM as food source. When a
task is submitted to a under loaded VM, the task will be updated with
other tasks and priority level is updated and the current load of the VM is
calculated and made available to other tasks which is waiting in the
queue. This information is more vital for other task in choosing the VM
which is less loaded. And whenever a high priority request is submitted a
particular VM some things has to be taken into account like the VM
should have minimum number of high priority tasks. The VMs will be
sorted in the ascending order depending on the number of task that is
handling. Whenever the VM is overloaded the task is moved over to the
under loaded node. The removed task updates the details of the VM in
terms of number of task handling by the machine and the higher priority
details. This updating helps in identifying the VM based on the load and
availability factor. But the selection of head node is a vital one which
helps in forward and backward movement but no effective mechanism is
used in selecting the approach which is a major drawback in this
approach.

Agent based technique is been adopted by certain researchers for
load balancing in the cloud environment. The agent is software that is
designed to satisfy the needs of the objectives.

Singh et al. [24] have proposed Autonomous based Agent Load
Balancing Algorithm (A2LB) to improve the throughput, resource utili
zation as well as scalability and reliability. Whenever a Virtual Machine
is found to be overloaded, the CSP should be able to distribute the re
sources in a way so as to make sure that the resources that are currently
available are properly utilized while also to maintain all the VMs
balanced. There are three types of agents that are available in A2LB, they
are 1) Load Agent, 2) Channel Agent and 3) Migration Agent. The main
purpose of a local agent is to retain each and every specifics of the data
center while also controlling the information policy. The channel agent
generally receives the request from the load agent. Based on these re
quests, this agent will begin some migration agents to other data centers
which will be used for exploring all other VM’s in order to find similar
configuration. The channel agents have the ability to maintain the
location, selection and transfer policies. Channel agents are helpful in
initializing the Migration agents that are helpful for shifting to other
data centers as well as used for communicating with the load agent of
that data center in order to enquire about the status of the Virtual Ma
chines that are available there. The major drawback of this approach is
time consumption as the migration agent consumes higher time in
identifying a VM.

An application aware load balancing scheme was proposed by Tas
quier et al. it uses multi agent concepts where the agents are used to
identify the status of the node whether it is over utilized or under-
utilized [25]. It uses three agent namely executor agent which signify
the application in the cloud scenario, the provisioned agent is respon
sible for including and removing the resources and the monitor agent is
useful in analyzing the overloaded and under loaded conditions that
prevail in the cloud environment. This approach doesn’t insist more
upon the Quality of Service.

General load balancing scheme had been proposed by Chien et al,
this approach initially calculated the size of the jobs and the processing
capacity of the VM [26]. It has two factors one which relies on the

Algorithm
Algorithm for EMAMBO.

Calculate total number tasks in all nodes
Calculate the number of tasks in every node.
Response time “tres” for the received packet is calculated is Equ. (1).
Calculate the sum of workload of all the nodes for a time period “LCi tn ” using Equ.
(2)
Requested task response time is to be calculated using Equ. (4)
Threshold is calculated and compared with response time
If response time is found to be higher
Node is overloaded
The task will be migrated to the under loaded node using migration operator using
Equ.(6)
The position of task where node is present is updated using Equ.(7)
Else
Node is under loaded.

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

4

selection of VM that has the capacity to finish the required job and the
load balancing algorithm that is present. It calculates the overall time
required for processing the job that is present in the queue and also the
new jobs. The VM which communicates first will be selected to
distribute the job. From the results it is observed that the algorithm has
improved response time. This approach has power processing
complexity in it which is considered to be a hinder.

Sarood et al has eradicated the gap which arose between the appli
cation on cloud and super computers [27]. It uses object migration
method for running parallel application in virtual scenarios that un
dergo from impede jobs. The load balancing approach not only reduces
the time which caused by interfering jobs it also minimizes the energy
utilization. This approach always utilizes the load balancing approach
and doesn’t has any type of decision making system which is considered
to be an added drawback.

This section has discussed about the various load balancing ap
proaches for balancing the load in the cloud environment. This section
has discussed some noteworthy approaches proposed by the various
researchers and it has been analyzed with their working their advan
tages and disadvantages. Based on the literature survey we were able to
conclude the drawbacks of existing systems are consumes higher amount
of resources for load balancing, implementation with real map envi
ronment, time complexity is high, security policies of the VM is not
followed during migration of tasks, services doesn’t insisted upon
quality of service, lack of decision making and lack in better exploration
and exploitation in assigning the tasks. It is quite evident that there arose
a need for a methodology for improved load balancing in cloud. The
proposed methodology will be designed based on the properties of the
Meta heuristic approach as it has added merits like exploration and
exploitation which would play a vital role in load balancing [38].

3. Outline on the working of the proposed Enhanced Migration
and Adjustment operator Based Monarch Butterfly optimization
(EMAMBO)

• Whenever a new work arrives it is subjected to the analysis of
preprocessor

• The pre-processor computes arrived work based on the number of
tasks and length of the task.

• The tasks which are ready are sent to the VM load balancer
• The VM load balancer makes the first task to wait in the queue. The

tasks are generally performed in the order of FCFS (First Come First
Serve).

• In order to identify which task is allocated to which VM we must
know the details of allocation and de-allocation of the last task. This
can be related to how butterfly is identifying the food source. Then
the VM threshold is identified and the priority of the task must be
taken into consideration for processing the task.

• The Host limit is identified if the VM is found to be overloaded the
task has to be removed and placed in waiting queue and a suitable
host has to be found and allocated. It finds the VM machine based on
the threshold data’s and priority of the tasks.

• Once a suitable VM is found the task is removed from the waiting
queue

• The next task is obtained from the waiting queue.
• There may be situations when one or more VM is available in that

case the minimum migration time can be taken into consideration for
selecting a VM.

• The tasks which is allocated is generally updated on which VM that is
handling and whenever new tasks has to be processed with the help
of the proposed EMAMBO the new VM machine is been identified
and its threshold is cross verified for the purpose of the VM is not
overloaded.

The below section discusses about the proposed EMAMBO which is
designed based on the inspiration of the behavior of the Monarch

Butterflies.

3.1. Enhanced Migration and Adjustment operator Based Monarch
Butterfly optimization (EMAMBO)

Based on the inspiration of migration behavior of Monarch Butter
flies this Bio inspired algorithm has been designed based on [31–33].
The monarch butterflies have orange pattern and black pattern in their
wings which is found to be different from other butterflies. The male and
female can be easily identified with their pattern in wing. Initially they
were native of north and South America but they are wide spread across
other warm places wherever the milkweed grows.

Monarch butterflies are famous for their seasonal migration which
migrates from United States and Canada to California and Mexico during
winter seasons. They even travel nearly 3000 miles. Generally they use
sun to stay on course and their gene has efficient muscles which help in
travelling larger distance. They major reason for migration is to lay eggs
in milk weed and to increase their population. But now in the current
scenario the conservation group has suggested the US government to
include the Monarch butterflies in the endangered species as due to
climatic changes and reduced amount of milk weed available. Fig. 1
depicts the image Monarch Butterfly [34,35].

3.2. Modeling of Migration and Adjustment operator Based Monarch
Butterfly optimization

The migration behavior of butterfly is been adopted in migrating the
task of the overloaded nodes into the node which has been less loaded.
The general analogy of working of Monarch Butterfly is initially dis
cussed. The monarch butterflies exhibit the behavior of migration from
one region to another region. Based on this operation the migration
operator is designed. The search process is effectively carried only with
the help of migration operator and the adjustment operator. The
adjustment operator helps to identify the position of the node. Both
these operators can be used in parallel manner. It helps in making the
transition between exploration and exploitation.

The total number of task is analyzed in all the nodes and total
number of tasks handled by the nodes is initially calculated.

The periodical statistics is used for the response time and is initially
calculated for period of time interval ‘t’. The tarr denotes the packet
arrival message and trep denotes the reply time taken for replying the
received message. The response time for the received packet is calcu
lated using Eq. (1).

tres = trep − tarr (1)

The number of task request is denoted by treq in tn is denoted by
ftreqtn. to denote the workload brought by treq intn is denoted by Ltreq tn.
To calculate the sum of load of these nodes in the set NCi can be used to
represent the total number of received task request LCitn where Ci de
notes the node in the nth time period which is shown in Eq. (2).

Fig. 1. Monarch butterfly.

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

5

LCitn =
∑

treqeuroNci

ftreq tn (2)

Next phase involves in calculating the response time (tresponse)of the
requested task. The total response time of the accepted task in Ci in tn can
be obtained. The response time for the task which is sent by the
controller is denoted by treq in tn. So the response time is calculated using
the Eq. (3)

tci tn
=

∑
treq euroNci

tresponse

LCi tn
(3)

The threshold has to be calculated during the next phase of the work
as once the nodes crosses beyond the threshold the task must not be
allocated to the respective node. So response time plays a major role in
identifying the overloaded node. If the response time is found to be high
it denotes that the node is overloaded. The appropriate threshold tthres

hold is calculated using the extreme response time variation where r(ti-1)
denote the average response time in the (i-1) time and r(ti) represents
the average response time in the ith period. Using the Eq. (4) and (5) the
threshold can be predicted based on the first and second order.

r′(ti) =
rti − rti− 1

ti − ti− 1
(4)

r′′(ti) =
r′ti − r′ti− 1

ti − ti− 1
(5)

r(ti) is the average response time for the ith period r(ti-1) denote the
average response time in the (i-1). r′(ti) and r′ ′(ti) are the first and second
order prediction

If the response time increases it denotes that the node is overloaded
and further task should not be allocated to that node.

The task in the overloaded node has to be migrated to the under
loaded node, for this the migration operator is been used. Initially the
total number of tasks handled by the cluster can be calculated using ┌(p
* NT) (NT1) and NT–NT1(NT2) where NT is the total number of tasks
and p is the ratio of tasks in a node1. The migration process is done using
Eq. (6)

xt+1
i,k = xt

r1 ,k (6)

Where xt+1
i,k represents the kth task of xiand‘t+1’represents the old nodes

position of the task and xt
r1 ,kdenotes the newly migrated node position

of the task.r1represents the task which is randomly chosen from the
node.

r = rand ∗ peri

peri denotes the migration time period and rand is the random number
selected from the uniform distribution.

The position of the task in which node is present is been updated
using the adjusting operator. For task ‘j’ the randomly generated rand
number is smaller or equal to the value of p it is updated using the Eq.
(7).

xt+1
j,k = xt

best,k (7)

Where xt+1
j,k represents the kth task of xi and ‘t+1’represents the position

of the task in the ‘j’ node. xt
best,k denotes the best kth element of xbest.

If rand > p it will be updated using Eq. (8).

xt+1
j,k = xt

r3 ,k (8)

IfBar> p, where is the adjusting rate. It can be updated using Eq. (9)

xt+1
j,k = xt+1

j,k + β (dy − 0.5) (9)

whereβ denotes the weighted factor which influences the exploration

when β is found to be small it decreases exploration and influence
exploitation and Bar indicates the adjusting rate. The algorithm below
portrays the working of the proposed work.

4. Simulation set up

The proposed method has been implemented using CloudSim 3.03
environment. The CloudSim software is been widely used by the re
searchers for implementing the cloud environment [28,29]. For imple
menting the data centers and virtual machines and the policies for
provisioning host resources to the VM. The CloudSim is much more
flexible between the sharing of spaces and time shared allocation of
processing cores to the virtualized servers [30].

The two data centers which is simulated has a configuration of HP
ProLiant ML110 G4 (1860 MIPS, 4 GB) and HP ProLiant ML110 G5
(2660 MIPS, 4 GB) and it has a storage capacity of 1GB and a bandwidth
of 1GBps. For this experiment 50 VM has been designed to have storage
capacity of 2.5 GB and bandwidth of 100 mbps. Table 1 highlights the
additional simulation parameters used for implementing in the proposed
work.

The main role of a performance metrics is to measure the perfor
mance of the proposed system against benchmarked systems like Cuckoo
Search Algorithm (CSA), Honey Bee Algorithm (HBA) and Autonomous
Agent Based Load Balancing Algorithm (A2LB). The following metrics
were found to be suitable and were considered for measuring the per
formance of EMAMBO with existing approaches mentioned above.

Table 1
Simulation parameters.

Simulation Parameters Value

Number of Physical Machines(PM) 2-6
Number of Processing Units (PM) 4
Scheduling Interval (PM) 30ms
Monitoring Interval (PM) 180ms
No of Virtual Machines 50
Total number of Tasks 100-1000
Length of the Task 2500* Simulation limit
Number of iterations 100
Cluster size 1-65
Size of the task 500
Average RAM 512 MB
Average Bandwidth 1,00,000 Mbps

Fig. 2. EMAMBO response time vs no. of nodes.

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

6

1. Response Time: The response time is the total time taken by system
to serve a put forward task

2. Throughput: The throughput calculates number process which is
completed at a given unit time

3. Fault tolerance: The fault tolerance states that the algorithm con
tinues to balance the load in the cloud in spite of the occurrence of
fault in the nodes present

4. Migration: The migration time is the time incurred in migrating a
task from the overloaded node to the node which has fewer loads

5. Performance: The performance of the system is generally used to
measure the efficiency of the system after performing the load
balancing algorithm

6. Energy Consumption: Energy consumption denotes the amount of
energy consumed by the proposed system.

7. Transmission Time: It is the time taken by a task has to reach a
particular VM. It also depends upon the size of the task and the
bandwidth of the VM

Figs. 2 and 3 highlights the response time in accordance with the
proposed work and it is been studied under no of tasks and the no of
nodes. The response time is the total time taken by system to serve a put
forward task. The response time of the proposed EMAMBO algorithm is
found to be increased to a greater extend when compared to the existing
methods namely Cuckoo Search Algorithm (CSA), Honey Bee Algorithm
(HBA) and A2LB when it is varied against the number of nodes and also
with respect to the no of tasks. In Fig. 2, the response time is found to be
minimized by the proposed algorithm by 2%, 4% and 5 % respectively
against the benchmarks chosen and Fig. 3 the response time is consid
erably minimized by even under different number of task by 3%, 4% and
6% when compared against CSA, HBA and A2LB respectively.

Figs. 4 and 5 depicts the throughput which is achieved by the pro
posed work and it is further studied against the number of nodes and
increased number of task and the performance is compared with the
bench mark chosen. The throughput plays a vital role in analyzing the
efficiency of the proposed which is designed. The throughput generally
calculates number process which is completed at a given unit time. In
Fig. 4, the throughput of the proposed system EMAMBO is found to be
improved under increasing number of workloads by 6%, 9% and 12%
against the benchmarks CSA, HBA and A2LB. In Fig. 5, the proposed
work EMAMBO dominates the existing work like CSA, HBA and A2LB by

Fig. 3. EMAMBO response time vs workload.

Fig. 4. EMAMBO throughput vs workload.

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

7

5%, 8% and 10%improved throughput. The throughput is considered to
be important parameter always in optimization.

In Figs. 6 and 7 portrays hoe the fault tolerance is minimized by the
proposed work EMAMBO when it is investigated against the increased
number of tasks and the number of nodes. The fault tolerance is found to
be minimized when compared to the existing works chosen namely CSA,
HBA and A2LB. The fault tolerance generally states that the algorithm
continues to balance the load in the cloud in spite of the occurrence of
fault in the nodes present. Fig. 6 depicts that the proposed work
EMAMBO has maximized the fault tolerance rate under increased work
load by 3%, 5% and 6% respectively when compared to CSA, HBA and
A2LB. The Fig. 7 depicts that proposed work has maximized fault
tolerance rate drastically by 4%, 6% and 9% respectively when
compared to its bench mark chosen. The fault tolerance rate is crucial
parameter that has to be taken into consideration as the occurrence of
fault in the node is found to be quite evident. The fault should not affect
the Quality of Service which is rendered to the users. The proposed work
EMAMBO incorporates the features Meta heuristic approach and has
added advantages when compared to Cuckoo and Honey Bee
optimization.

Figs. 8 and 9 evaluates the proposed work EMAMBO in terms of the
parameter migration time under increased load and number of nodes

Fig. 5. EMAMBO- throughput vs no. of nodes.

Fig. 6. EMAMBO fault tolerance vs workload.

Fig. 7. EMAMBO fault tolerance vs no. of nodes.

Fig. 8. EMAMBO migration vs no. of nodes.

Fig. 9. EMAMBO migration vs no. of tasks.

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

8

and make as comparative analysis on the CSA, HBA and A2LB. The
migration time is the time incurred in migrating a task from the over
loaded node to the node which has fewer loads. The migration time of
the proposed work EMAMBO is found to minimum which eventually
reduces the computational overhead of the network. The Proposed work
makes use of exploration and exploitation at a better rate when
compared to cuckoo and honey bee. In Fig. 8 the migration time of the
proposed work EMAMBO is found to be minimized by 3%, 6% and 9%
respectively when compared to the bench marks CSA, HBA and A2LB
chosen. In Fig. 9, the proposed work is found to work better by mini
mizing the time taken for migrating the task under increased number of
nodes by when compared to the existing work.

Figs. 10 and 11 depicts performance of the proposed work EMAMBO
on the metrics performance when varied with number of tasks and
Number of nodes. The performance of the system is generally used to
measure the efficiency of the system after performing the load balancing
algorithm. The proposed work is found to have improved efficiency
when compared to the existing work namely CSA, HBA and A2LB. In
Fig. 10 the proposed Meta heuristic work EMAMBO is found to have
improved efficiency by 11%, 13% and 15% respectively when compared
to CSA, HBA and A2LB. In Fig. 11 the efficiency is improved even though
improvised when varied under varied number of nodes the performance
is improved by 12%, 13% and 17% respectively when compared against
the bench marks chosen.

Fig. 10. EMAMBO performance vs workload.

Fig. 11. EMAMBO performance vs no. of nodes.

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

9

In Figs. 12 and 13 the energy consumption parameter plays a crucial
role in load balancing approach. Generally the load balancing approach
eventually reduces the overheating and therefore minimizes the energy
consumption of the nodes. The usage of an effective load balancing
approach helps in minimizing the energy consumption. In Fig. 12 the
usage of proposed methodology EMAMBO helps in minimizing the en
ergy utilization to a greater extend by 6%, 8% and 12% respectively
when compared to its counterparts CSA, HBA and A2LB by. In Fig. 13 the
energy utilization is found to be minimized even under different nodes
by 7%, 1% and 14% respectively when compared against the bench
marks chosen.

The Fig. 14, uses transmission time as a metric to compare the pro
posed system namely EMAMBO with benchmarked systems namely
A2LB, HBA and CSA. The transmission time for EMAMBO is lower by
10%, 8% and 7% when compared with A2LB, HBA and CSA respectively.

5. Conclusion and Future Enhancement

It is well known that computers tend to make the life of its users
simple. There are several instances where a single computer cannot
handle tremendous workload. So this lead to the birth of distributed
computing in which a complex task is divided into much simpler task

Fig. 12. EMAMBO energy consumption vs workload.

Fig. 13. EMAMBO energy consumption vs no. of nodes.

R. Kaviarasan et al.

Advances in Engineering Software 169 (2022) 103128

10

and is handed out to different systems in a network. Some of the issues
that had arisen in distributed computing were resolved in cloud
computing. Cloud computing has several issues out of which load
balancing is considered to be an important one. Load balancing deals
about maintaining equal workload for all nodes in cloud. If a node is
found to have tremendous workload then some of its tasks is shifted to a
node with much lesser workload. Based on the simulation results it is
quite evident that the proposed EMAMBO fairs quite better when
compared to benchmarked systems like CSA, HBA and A2LB. EMAMBO
has maximized fault tolerance rate by 4%, 6% and 9% respectively when
compared to its bench mark chosen. The major reason behind the
improvisation in the fault tolerance of the system is due to effective
handling of the task migration in case of system failure. In EMAMBO, the
efficiency is improved by 12%, 13% and 17% respectively when
compared to CSA, HBA and A2LB. As a future work, this proposed sys
tem can be integrated with several other meta-heuristics approaches.

Declaration of Competing Interest

The authors have no conflict of interest with any reviewers and also
with the journal and no funding agencies are involved in the creation of
the manuscript.

References

[1] Xu Yinan, Liu Hui. Zhihao Long “A distributed computing framework for wind
speed big data forecasting on Apache Spark. Sustain Energ Tech Assess 2020;37.
Feb.

[2] Bandopadhaya Shuvabrata, Dey Rajiv, Suhag Ashok. Integrated healthcare
monitoring solutions for soldier using the internet of things with distributed
computing. Sustainable Computing: Informatics and Systems, 26; June 2020. Vol.

[3] Dariusz Mrozek “A review of Cloud computing technologies for comprehensive
microRNA analyses. Comput Biol Chem Oct. 2020;88.

[4] Gireesha Obulaporam, Somu Nivethitha, Krithivasan Kannan, Shankar Sriram VS.
IIVIFS-WASPAS: An integrated Multi-Criteria Decision-Making perspective for
cloud service provider selection. Fut Gen Comp Syst Feb. 2020;103:91–110.

[5] Lang Michael, Wiesche Manuel, Krcmar Helmut. Criteria for selecting cloud service
providers: a delphi study of quality-of-service attributes. Information &
Management Sep. 2018;55(6):746–58.

[6] Harikrishna P, Amuthan A. A survey of testing as a service in cloud computing. In:
International Conference on Computer Communication and Informatics (ICCCI);
2016. p. 1–5. Jan. 2016.

[7] Hamad RMH, Al Fayoumi M. Modernization of a Classical Data Center (CDC) vs.
adoption in cloud computing calculate total cost of ownership for both cloud and
CDC - Jordanian case study. In: 2018 International Arab Conference on Information
Technology (ACIT); Mar. 2018.

[8] Mahmood Z. Cloud computing: characteristics and deployment approaches. In:
2011 IEEE 11th International Conference on Computer and Information
Technology, Pafos; 2011.

[9] Song Chi-hoon, Kim Sang Woo, Sohn Young-woo. Acceptance of public cloud
storage services in South Korea: A multi-group analysis. Int J Inf Manage Apr.
2020;51.

[10] Farrukh Nadeem, Rizwan Qaiser, “An early evaluation and comparison of three
private cloud computing software platforms,” Vol. 30, Pp. 639-654, May 2015.

[11] Park Joonseok, Kim Ungsoo, Yun Donggyu, Yeom Keunhyuk. Approach for
selecting and integrating cloud services to construct hybrid cloud. Grid Computing.
May 2020.

[12] Asaka RA, Mendes GHS, Ganga GMD. Factors influencing customer satisfaction in
software as a service (SaaS): proposal of a system of performance indicators. IEEE
Lat Am Trans Jul. 2017;15(8):1536–41.

[13] Linthicum DS. PaaS death watch? IEEE Cloud Comput Jan.-Feb. 2017;4(1):6–9.
[14] Tsai Wen-Lung. Constructing assessment indicators for enterprises employing

cloud IaaS. Asia Pacif Manage Rev Aug. 2020.
[15] Pillutla Harikrishna, A Amuthan,“SDN-based DDoS attack mitigation scheme using

convolution recursively enhanced self organizing maps,” Vol. 45, May 2020.
[16] Pillutla H, Arjunan A. Fuzzy self organizing maps-based DDoS mitigation

mechanism for software defined networking in cloud computing. J Ambient Intell
Hum Comput 1559 Apr. 2019;10(4):1547.

[17] Krancher, O., & Luther, P. (2015). Software development in the cloud: exploring
the affordances of platform-as-a-service.

[18] Kolb L, Thor A, Rahm E. Block-based load balancing for entity resolution with
MapReduce. In: International Conference on Information and Knowledge
Management (CIKM); 2011. p. 2397–400.

Fig. 14. EMAMBO transmission time vs no. of task.

R. Kaviarasan et al.

http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0001
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0001
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0001
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0018

Advances in Engineering Software 169 (2022) 103128

11

[19] Bok K, Hwang J, Jongtae Lim J, Kim Y, Yoo J. An efficient MapReduce scheduling
scheme for processing large multimedia data. Multimed Tools Appl 2016:1–24.

[20] Ghoneem M, Kulkarni L. An adaptive MapReduce scheduler for scalable
heterogeneous systems. In: Proceeding of the International Conference on Data
Engineering and Communication Technology; 2016. p. 603–6011.

[21] Yakhchi M, Ghafari SM, Yakhchi S, Fazeliy M, Patooghi A. Proposing a
LoadBalancing method based on cuckoo optimization algorithm for energy
management in cloud computing infrastructures. In: Published In: Proceedings of
the 6th International Conference on Modeling, Simulation, and Applied
Optimization (ICMSAO); 2015.

[22] Babu LDD, Krishna PV. Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Appl Soft Comput 2013;13(5):2292–303.

[23] Nishant K, Sharma P, Krishna V, Gupta C, Singh KP, Nitin N, Rastogi R. Load
balancing of nodes in cloud using ant colony optimization. In: Proceedings of the
14th International Conference on Modelling and Simulation; 2012. p. 3–8.

[24] Singh P, Baaga P, Gupta S. Assorted load-balancing algorithms in cloud computing:
a survey. Int J Comput Appl 2016;(7):143.

[25] Tasquier L. Agent based load-balancer for multi-cloud environments. Columbia Int
Publ J Cloud Comput Res 2015;1(1):35–49.

[26] Chien NK, Son NH. Load-balancing algorithm based on estimating finish time of
services in cloud computing. Int Conf Adv Commut Tech (ICACT) 2016:228–33.

[27] Sarood O, Gupta A, Kale LV. Cloud friendly load balancing for HPC applications. In:
Preliminary Work. International Conference on Parallel Processing Workshops;
2012. p. 200–5.

[28] Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, &Buyya R. CloudSim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Softw Pract Exp 2011;41(1):23–50.

[29] Buyya R, Ranjan R, &Calheiros RN. Modeling and simulation of scalable Cloud
computing environments and the CloudSim toolkit: Challenges and opportunities.

In: 2009 international conference on high performance computing & simulation.
IEEE; 2009. p. 1–11.

[30] Kumar R, &Sahoo G. Cloud computing simulation using CloudSim. arXiv preprint
2014. arXiv:1403.3253.

[31] Wang GG, Deb S, Cui Z. Monarch butterfly optimization. Neur Comput Appl 2019;
31(7):1995–2014.

[32] Feng Y, Deb S, Wang GG, Alavi AH. Monarch butterfly optimization: A
comprehensive review. Expert Syst Appl 2020:114418.

[33] Faris H, Aljarah I, Mirjalili S. Improved monarch butterfly optimization for
unconstrained global search and neural network training. Appl Intellig 2018;48(2):
445–64.

[34] Ghetas M. Learning-based monarch butterfly optimization algorithm for solving
numerical optimization problems. Neur Comput Appl 2022;34(5):3939–57.
https://doi.org/10.1007/s00521-021-06654-8.

[35] Yazdani S, Hadavandi E, Mirzaei M. CCMBO: A covariance-based clustered
monarch butterfly algorithm for optimization problems. Memet Comput 2022.
https://doi.org/10.1007/s12293-022-00359-8.

[36] Mohanty S, Patra PK, Ray M, Mohapatra S. A novel meta-heuristic approach for
load balancing in cloud computing. Research Anthology on Architectures,
Frameworks, and Integration Strategies for Distributed and Cloud Computing.
2021. p. 504–26. https://doi.org/10.4018/978-1-7998-5339-8.ch023.

[37] Dam S, Mandal G, Dasgupta K, Dutta P. An ant-colony-Based meta-heuristic
approach for load balancing in cloud computing. Research Anthology on
Architectures, Frameworks, and Integration Strategies for Distributed and Cloud
Computing. 2021. p. 873–903. https://doi.org/10.4018/978-1-7998-5339-8.
ch041.

[38] Annie Poornima Princess G, Radhamani AS. A hybrid meta-heuristic for optimal
load balancing in cloud computing. J Grid Comput 2021;19(2). https://doi.org/
10.1007/s10723-021-09560-4.

R. Kaviarasan et al.

http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0024
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0024
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0025
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0025
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0026
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0026
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0028
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0028
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0028
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0030
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0030
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0031
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0031
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0032
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0032
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00039-4/sbref0033
https://doi.org/10.1007/s00521-021-06654-8
https://doi.org/10.1007/s12293-022-00359-8
https://doi.org/10.4018/978-1-7998-5339-8.ch023
https://doi.org/10.4018/978-1-7998-5339-8.ch041
https://doi.org/10.4018/978-1-7998-5339-8.ch041
https://doi.org/10.1007/s10723-021-09560-4
https://doi.org/10.1007/s10723-021-09560-4

	Load balancing in cloud environment using enhanced migration and adjustment operator based monarch butterfly optimization
	1 Introduction
	2 Literature survey
	3 Outline on the working of the proposed Enhanced Migration and Adjustment operator Based Monarch Butterfly optimization (E ...
	3.1 Enhanced Migration and Adjustment operator Based Monarch Butterfly optimization (EMAMBO)
	3.2 Modeling of Migration and Adjustment operator Based Monarch Butterfly optimization

	4 Simulation set up
	5 Conclusion and Future Enhancement
	Declaration of Competing Interest
	References

