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A B S T R A C T

The decision fusion for multi-route and multi-hop Wireless Sensor Networks (WSNs) is studied, wherein a
discrete memoryless channel model, i.e., the Binary Symmetric Channel (BSC), is considered to characterize
the relay transmission of each hop from the local sensor to the fusion center. In particular, we first develop
the optimal log-likelihood ratio (LLR) based decision fusion rule, wherein the fusion center is assumed to
have perfect knowledge of both the local sensor performance indices and the Channel State Information (CSI),
i.e., crossover probability for each BSC. Secondly, we derive the suboptimum and robust fusion rules for two
cases. In the first case, channel condition from the source to the local sensor is considered to be ideal. In
the second case, the crossover probability for each BSC is assumed to be relatively large or small. Our result
show that our suboptimum fusion detectors require less or no a priori information about crossover probability
and/or the local sensor performance indices, and thus are easy to implement. We also show that the simple
decision fusion statistic, i.e., the counting-based statistic, can be directly derived from the optimal LLR-based
statistic for both cases. These suboptimum fusion rules are clearly desired for applications, wherein perfect
estimation of the local sensor performance and CSI is complexity-intensive or unachievable. Furthermore, the
optimal LLR-based scheme for joint decision fusion and CSI estimation is proposed. We uniformly quantize the
equivalent crossover probability into discrete status, and thus give a suboptimum but more computationally
practical scheme. The performance evaluation is finally developed both analytically and through simulation.
. Introduction

Much concentrations have been recently achieved on wireless sensor
etworks (WSNs) especially because of its appropriate application in

‘edge access’’ of future ‘‘Internet of Things (IoT)’’. In WSNs, a collection
f sensor nodes are randomly distributed in a geographical area, and
he sensing and measuring tasks are usually performed. Its typical appli-
ations include health care, environmental and structural monitoring,
isaster recovery and rescue operations [1–4].

In such distributed networks, the fusion center (FC) gathers the
ecisions from the local sensors, and the global decision is then de-
lared by the FC using a particular fusion rule [5]. Obviously, selecting
eliable fusion rules is the key to obtain excellent detection perfor-
ance. For some resource constrained wireless sensor networks, low

omplexity decision fusion schemes can save a lot of resources, which
ill greatly improve the work efficiency of the whole WSNs. There-

ore, it is very important for academics to study the fusion rules

∗ Corresponding author at: School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China.
E-mail address: fuzhumu@haust.edu.cn (Z. Fu).

used by fusion centers in Wireless Sensor Networks. To the best of
our knowledge, several decision fusion schemes have been proposed
in recent years [6–9]. The work of [6] pays attention towards dis-
tributed detection for multi-sensor millimeter wave (mmWave) massive
multiple-input multiple-output (MIMO) WSNs, and low complexity fu-
sion rules following the idea of hybrid combining are constructed. Local
sensor decision rules based on an energy detector is introduced in [7],
and the performance characteristics is also given. By ordering sensor
transmissions, an energy-efficient counting rule for distributed detec-
tion is proposed in [8], wherein the sensors transmit their unquantized
statistics to the fusion center in a sequential manner. Interestingly,
in [9], the behavior of the max-product algorithm is analyzed in a
distributed detection scenario. In fact, this algorithm can be considered
as linear data-fusion as indicated in [9]. For a detailed discussion
and an extensive list of references of decision fusion, the authors
suggest [4].
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Unlike those who were researching ways to develop decision fusion
nder single-hop WSNs, substantial work has also been devoted to
ptimizing the fusion process over multi-hop WSNs [10–15]. Note that,
ulti-hop transmission is of value for some resource-constrained WSNs.

n this context, the multi-hop transmission is needed to relay the binary
ecisions from local sensors to reach a fusion center for minimal energy
onsumption.

The channel-aware likelihood ratio (LLR) based decision fusion for
ulti-hop relay WSNs over a fading environment is analyzed in [10].
owever, the channel fading statistics are assumed to be known for the

usion center. In a heterogeneous WSN (HWSN), an iterative decision
usion algorithm is studied in [11], wherein the multi-hop transmission
s needed to relay the sensed information from 𝑁 heterogeneous access
oints to 𝑀 heterogeneous FCs. In [12], to maximize the network
ifetime and improve the surveillance coverage, a data collection mech-
nism is proposed for the HWSN, which uses a mobile sink to collect
ata. Distributed detection of sparse signals with censoring sensors in
lustered multi-hop sensor networks is presented in [13]. By taking
arameters of energy consumption balance, environmental metrics and
eliability into consideration, [14] introduces a fusion-based routing al-
orithm, which is environment-aware as well as reliable. Interestingly,
n [15], the minimum cuts detection problem is studied in a given
ireless multi-hop network.

Unlike previous studies that too much emphasis on continuous
hannel, in this paper, the channel condition from the local sensor
o the fusion center is considered to be Binary Symmetric Channel
BSC) [16]. Our main contributions are summarized as follows.

• We develop the optimal LLR-based decision fusion rule for multi-
route and multi-hop WSNs over the BSC. The explicit and exact
solution for the optimum statistic shows that perfect knowledge
of the local sensor performance indices and the Channel State
Information (CSI), i.e., crossover probability for each hop, should
be prior completely known at the fusion center. Furthermore, the
logarithm operation is also involved. These two intrinsic charac-
teristics depict that the successfully implementation of the opti-
mal scheme at the fusion center is complexity-intensive, and will
consume high computation power especially when the number of
route and relay node is large.

• We assume that the channel condition from the source to the local
sensor is ideal, i.e., the local sensor performance is perfect. Then,
we first show that the optimal fusion rule can be reduced to the
suboptimum Chair–Varshney rule. Further, when the crossover
probability for each relay BSC is relatively large, the optimal
fusion rule further reduces to form reminiscent of a maximum
ratio combining (MRC) statistic for fading mitigation in wireless
communications with channel diversity. We also show that the
simple decision fusion statistic, i.e., the counting-based decision
fusion statistic, can also be adopted if the idea of equal gain com-
bining (EGC) is directly borrowed. The statistic in the form of an
selective combining (SC) is also given, wherein we select the local
observation from the optimal relay channel. These suboptimum
schemes are of various degrees of complexity.

• We also derive the robust suboptimum LLR-based fusion rules
when the crossover probability for each relay BSC is relatively
small or large. For the former case, we achieve a Chair–Varshney
rule, and only a priori information about the local sensor per-
formance indices is required. For the latter case, we develop a
suboptimum fusion statistic with a analogs form of the MRC,
wherein we further assume that the performance indices is in-
variable for each local sensor. The counting-based decision fusion
statistic can also be surprisingly adopted in this case. That is,
the fusion center does not need to take the prior information
such as crossover probability and local sensor performance in-
dices as the fusion conditions, which is feasible. This is clearly
desired for applications, whenin perfect estimation of the local
sensor performance indices and CSI is complexity-intensive or
unachievable.
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• The optimal LLR-based scheme for joint decision fusion and CSI
estimation is also proposed. Our explicit and exact solution for
this optimal joint decision fusion and CSI estimation shows that
the search should be developed for each value in crossover prob-
ability space. This is clearly of high implementation complexity.
Thus, we uniformly quantize the continuous crossover probability
space into discrete status, and thus give a suboptimum but more
computationally practical scheme. CSI estimation is absolutely
necessary for decision fusion if channel coding is considered in
the local sensor.

• The explicit and exact solution for performance analysis of a
special case of counting-based decision fusion, i.e., majority-based
decision fusion, is developed, wherein we assume that the lo-
cal sensor performance indices and CSI is invariable for each
transmission link. The extension to a special case, wherein the
channel condition from the source to the local sensor is ideal,
is also studied. Extensive simulations are finally designed and
implemented to verify all of our fusion rules and performance
analysis.

Please note that we concentrate on information fusion under co-
erent channels in the present work. However, if phase information
s not known at the fusion center, the noncoherent fusion should be
onsidered [17–24].

We organize the rest of this paper as follows. Section 2 focuses on
he multi-hop parallel distributed transmission system over the BSC.
he equivalent channel for multi-hop relay transmission is presented

n Section 3. We develop the optimal LLR-based decision fusion in Sec-
ion 4, while Section 5 concentrates on derivation of the suboptimum
LR-based decision fusion. The LLR-based scheme for joint decision
usion and CSI estimation is given in Section 6. The performance
nalysis is developed in Section 7. The simulation results are presented
nd discussed in Section 8. Finally, some conclusions and future work
re provided in Section 9.

. System model

Consider a parallel distributed decision fusion structure as depicted
n Fig. 1, where the transmission of 𝑥𝑖 from each local sensor to the
usion center is characterized by a multi-hop BSC model. Here, 𝐼 inde-
endent sensors make local decisions with maximum-likelihood (ML)
rinciple, and the data is generated according to two hypotheses under
est, i.e., 𝐻0 or 𝐻1. Then these decisions are transmitted over 𝐽 BSC
hannels in typical serial concatenation form to a fusion center, and
he received data is denoted as 𝑦𝑖. Note that, the detection probability
𝑑𝑖 and the false alarm probability 𝑃𝑓𝑖 is preferred to characterize
he data transmission quality from the source to local sensors in the
resence of channel error. We can use a variety of estimation methods
o obtain them, such as the method based on the maximum likelihood
atio criterion proposed in [25]. In this paper, we assume that 𝑃𝑑𝑖 and
𝑓𝑖 are completely known.

Here, without loss of generality and also for analysis convenience,
e consider the BSC for data transmission from local sensors to the

usion center. A series of BSC channels may be equivalent to the total
SC channel in the transmission link. This makes the whole transmis-
ion process clearer, which will be discussed in Section 3. The extension
o other channel case is straightforward but not pursued here. Further-
ore, for simplicity in describing decision fusion principle, the relay
ode just forwards the impaired channel observation until it reaches the
C. Equivalently, the amplify and forward (AF) protocol is implemented
t the relay node, for which however the amplification factor is set
o be 1. This mainly takes into the consideration that energy as well
s processing capabilities is limited for the relay node. However, the
xtension to other relay processing schemes, e.g., decode-and-forward
DF), is straightforward but also not pursued here.
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Fig. 1. Parallel distributed detection with multi-hop relay structure.
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. Equivalent channel for multi-hop relay transmission

Before launching the decision fusion discussion, two interesting
emmas will be given first. Let 𝜀𝑖,𝑗 be the crossover probability of the
th relay BSC in the 𝑖th routing, and the following can be derived.

emma 1. The whole transmission from the local sensor to the FC can be
quivalent to a BSC as shown in Fig. 2, which is obtained by cascading 𝐽
SC channels in series, and the crossover probability matrix is
[

1 − 𝜀𝑖 𝜀𝑖
𝜀𝑖 1 − 𝜀𝑖

]

=
[

𝑃
(

𝑦𝑖 = 0 |
|

𝑥𝑖 = 0
)

𝑃
(

𝑦𝑖 = 1 |
|

𝑥𝑖 = 0
)

𝑃
(

𝑦𝑖 = 0 |
|

𝑥𝑖 = 1
)

𝑃
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|

𝑥𝑖 = 1
)

]

=
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⎢

⎢

⎢

⎣

1
2

[

1 +
𝐽
∏
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(

1 − 2𝜀𝑖,𝑗
)

]

1 − 1
2

[

1 +
∏𝐽

𝑗=1
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)

]

1 − 1
2

[

1 +
𝐽
∏

𝑗=1

(

1 − 2𝜀𝑖,𝑗
)

]

1
2

[

1 +
∏𝐽

𝑗=1
(

1 − 2𝜀𝑖,𝑗
)

]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(1)

Proof. For each route, the local observation 𝑦𝑖 at the FC can be
expressed as [26]:

𝑦𝑖=𝑥𝑖 ⊕
𝐽
∑

𝑗=1
⊕𝑒𝑖,𝑗 , 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽 , (2)

where 𝑒𝑖,𝑗 is the error for the 𝑗th relay BSC in the 𝑖th routing. Following
from (2), we have that

𝜀𝑖=𝑃
(

𝑦𝑖 ≠ 𝑥𝑖
)

=𝑃

( 𝐽
∑

𝑗=1
⊕𝑒𝑖,𝑗 = 1

)

=1 − 𝑃

( 𝐽
∑

𝑗=1
⊕𝑒𝑖,𝑗 = 0

)

. (3)

Since the probability that an odd number of bits in
{

𝑒𝑖,1, 𝑒𝑖,2,… , 𝑒𝑖,𝐽
}

are ‘‘1’’ is 1 − 1
{

1 +
∏𝐽 (

1 − 2𝜀
)

}

[27], thus (3) can be rewritten
2 𝑗=1 𝑖,𝑗
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as

𝜀𝑖=1 −
1
2

{

1 +
𝐽
∏

𝑗=1

[

1 − 2𝜀𝑖,𝑗
]

}

, (4)

where 𝜀𝑖,𝑗 = 𝑃
(

𝑒𝑖,𝑗 = 1
)

denotes the crossover probability for the 𝑗th
elay BSC in the 𝑖th routing.

emma 2. The channel capacity of the equivalent BSC in Lemma 1 is

= 1 −𝐻

(

1 − 1
2

{

1 +
𝐽
∏

𝑗=1

[

1 − 2𝜀𝑖,𝑗
]

}

, 1
2

{

1 +
𝐽
∏

𝑗=1

[

1 − 2𝜀𝑖,𝑗
]

})

.

(5)

Proof. Following from Lemma 1, we have that the channel transition
matrix is a symmetric matrix. The corresponding channel capacity is
(5) [28].

Here, we only discuss the equivalent BSC model from the local
sensor to the fusion center, although that there are different noise levels
from the actual signal source to the local sensor. In Section 4, we will
study the channel conditions according to the detection probability,
false alarm probability and equivalent BSC to obtain the LLR-based
decision fusion.

4. Optimal LLR-based decision fusion

Given the conditional independence assumption of local observa-
tions, the optimal LLR-based decision fusion statistic can be easily
derived as

𝛬 = log
𝑃
(

𝐻1 |y
)

𝑃
(

𝐻0 |y
) = log

∏

𝑖 𝑃
(

𝐻1
|

|

𝑦𝑖
)

∏

𝑖 𝑃
(

𝐻0
|

|

𝑦𝑖
)= log

{

∏

𝑖

[

𝑃
(

𝐻1
|

|

𝑦𝑖
)

𝑃
(

𝐻0
|

|

𝑦𝑖
)

]}

=
∑

log
𝑃
(

𝐻1
|

|

𝑦𝑖
)

( ) =
∑

𝛬
(

𝑦𝑖
)

.

(6)
𝑖 𝑃 𝐻0
|

|

𝑦𝑖 𝑖
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Here, y =
[

𝑦1, 𝑦2,… , 𝑦𝐼
]

is a binary vector received at the fusion center,
and it contains observations from all 𝐼 local sensors after 𝐽 hops. 𝛬

(

𝑦𝑖
)

can be considered as the optimal LLR-based decision statistic given the
local observation 𝑦𝑖, which is critical to the final fusion detection. In the
following, we will pay attention towards an explicit and exact solution
for this metric.

Lemma 3. The optimal LLR-based decision statistic, given the local obser-
vation 𝑦𝑖, can be given as

𝛬
(

𝑦𝑖
)

= log
𝑃
(

𝐻1
|

|

𝑦𝑖
)

𝑃
(

𝐻0
|

|

𝑦𝑖
)

= log
𝑃𝑑𝑖𝑃

(

𝑦𝑖 ||𝑥𝑖 = 1
)

+
(

1 − 𝑃𝑑𝑖
)

𝑃
(

𝑦𝑖 ||𝑥𝑖 = 0
)

𝑃𝑓𝑖𝑃
(

𝑦𝑖 ||𝑥𝑖 = 1
)

+
(

1 − 𝑃𝑓𝑖
)

𝑃
(

𝑦𝑖 ||𝑥𝑖 = 0
) .

(7)

Proof. See Appendix.

Following from Lemma 3, we have that when the local observation
𝑦𝑖 = 1, 𝛬

(

𝑦𝑖
)

can be modified as

𝛬
(

𝑦𝑖
)

= log
𝑃𝑑𝑖

(

1 − 𝜀𝑖
)

+
(

1 − 𝑃𝑑𝑖
)

𝜀𝑖
𝑃𝑓𝑖

(

1 − 𝜀𝑖
)

+
(

1 − 𝑃𝑓𝑖
)

𝜀𝑖
, (8)

here 𝜀𝑖 is the crossover probability of the equivalent BSC obtained
rom serial concatenation of 𝐽 BSC for the 𝑖th route as shown in Fig. 2.
ote that, 𝜀𝑖 has been given in Lemma 1. Similarly, when 𝑦𝑖 = 0, we
ay have that

(

𝑦𝑖
)

= log
𝑃𝑑𝑖𝜀𝑖 +

(

1 − 𝑃𝑑𝑖
) (

1 − 𝜀𝑖
)

𝑃𝑓𝑖𝜀𝑖 +
(

1 − 𝑃𝑓𝑖
) (

1 − 𝜀𝑖
) . (9)

ubstituting (8) and (9) into (6), we get

=
∑

𝑖∶𝑦𝑖=1
log

𝑃𝑑𝑖
(

1 − 𝜀𝑖
)

+
(

1 − 𝑃𝑑𝑖
)

𝜀𝑖
𝑃𝑓𝑖

(

1 − 𝜀𝑖
)

+
(

1 − 𝑃𝑓𝑖
)

𝜀𝑖

+
∑

𝑖∶𝑦𝑖=0
log

𝑃𝑑𝑖𝜀𝑖 +
(

1 − 𝑃𝑑𝑖
) (

1 − 𝜀𝑖
)

𝑃𝑓𝑖𝜀𝑖 +
(

1 − 𝑃𝑓𝑖
) (

1 − 𝜀𝑖
) .

(10)

Then, the final fusion criterion is

̂ =
{

1, if𝛬 ≥ 𝜏1
0, if𝛬 < 𝜏1.

(11)

ere, 𝜏1 is the decision threshold.
The fusion detection process structure of the fusion center is shown

n Fig. 3. In fact, after a simple analysis, we find that since the channel
rom the source to the local sensor is also a binary channel, and
he transmission process from the source to the fusion center can be
170
escribed equivalently by the configuration in Fig. 4. According to
ig. 4, it is easy to get the result given in (10).

As depicted in (10), the logarithmic operation is required, which
ntroduces high complexity and consumes high computation power.
oreover, the fusion center should also have perfect knowledge of the
SI (i.e., crossover probability 𝜀𝑖,𝑗) and the local sensor performance in-
ices (i.e., 𝑃𝑑𝑖 and 𝑃𝑓𝑖). Even if the fusion center can somehow estimate
he CSI, it will be implementation-intensive. Furthermore, even if the
ocal sensors can easily estimate their detection performances in real
ime, it will be very expensive to transmit them to the fusion center.
n the following, we will pay attention towards suboptimum but more
omputationally practical decision fusion rules.

. Suboptimum LLR-based decision fusion

.1. Decision fusion for ideal local channel

We assume that the channel from the source to the local sensor is
deal, i.e., the channel condition is 𝑃𝑓𝑖 = 0, 𝑃𝑑𝑖 = 1, and (10) can be
xpressed as

=
∑

𝑖∶𝑦𝑖=1
log

1 − 𝜀𝑖
𝜀𝑖

+
∑

𝑖∶𝑦𝑖=0
log

𝜀𝑖
1 − 𝜀𝑖

=
∑

𝑖
(−1)𝑦𝑖 log

𝜀𝑖
1 − 𝜀𝑖

=
∑

𝑖

[

(

2𝑦𝑖 − 1
)

log
1 − 𝜀𝑖
𝜀𝑖

]

≜ 𝛬1.
(12)

learly, 𝛬1 resembles a MRC statistic for diversity combining, and the
actor log 1−𝜀𝑖

𝜀𝑖
in (12) can be considered as the ‘‘fading gain’’ associated

with the 𝑖th branch, which is determined by channel condition of all the
hops as shown in (4). Let 𝛿𝑖,𝑗= log 1−𝜀𝑖,𝑗

𝜀𝑖,𝑗
, we know that the relationship

between the tanh 𝜃 and arctanh𝜃 is 2arctanh𝜃 = ln 1+tanh 𝜃
1−tanh 𝜃 , then we can

depict (12) as [29]:

log
1 − 𝜀𝑖
𝜀𝑖

= log
1
2

[

1 +
∏𝐽

𝑗=1
(

1 − 2𝜀𝑖,𝑗
)

]

1 − 1
2

[

1 +
∏𝐽

𝑗=1
(

1 − 2𝜀𝑖,𝑗
)

] = log
1 +

∏𝐽
𝑗=1 tanh

𝛿𝑖,𝑗
2

1 −
∏𝐽

𝑗=1 tanh
𝛿𝑖,𝑗
2

= 2arc tanh

[ 𝐽
∏

𝑗=1
tanh

𝛿𝑖,𝑗
2

]

= 𝛷−1

{ 𝐽
∑

𝑗=1
𝛷
[

𝛿𝑖,𝑗
]

}

.

(13)

In (13), we define that 𝛷 (𝑥) = 𝛷−1 (𝑥) = ln 𝑒𝑥+1
𝑒𝑥−1 = − ln

(

tanh 𝑥
2

)

.
Note from the shape of 𝛷 (𝑥) that the largest term in the sum of
(13) corresponds to the smallest 𝜀𝑖,𝑗 , so that, assuming that this term
dominates the sum,

𝛷−1

{ 𝐽
∑

𝛷
(

𝛿𝑖,𝑗
)

}

≈ min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

. (14)

𝑗=1
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Fig. 3. Decision fusion process in fusion center.
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𝛬

Fig. 4. Equivalent channel for transmission from binary source to fusion center.

According to the above derivation, another form of (12) can be derived
as

𝛬 =
∑

𝑖

[

(

2𝑦𝑖 − 1
)

𝛷−1

{ 𝐽
∑

𝑗=1
𝛷
(

𝛿𝑖,𝑗
)

}]

≈
∑

𝑖

[

(

2𝑦𝑖 − 1
)

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

]

≜ 𝛬2.

(15)

As shown in (15), the ‘‘fading gain’’ now is only determined by the
worst channel condition in all the hops. Finally, we propose a heuristic
statistic in the simple form of an EGC that requires minimum amount
of information:
𝛬=

∑

𝑖

(

2𝑦𝑖 − 1
)

≜ 𝛬3. (16)

In fact, when the quality of each equivalent transmission link is the
same, (15) can be changed to

𝛬 = 𝐾1
∑

𝑖

(

2𝑦𝑖 − 1
)

, (17)

where 𝐾1 = log 1−𝜀𝑖
𝜀𝑖

. The constant term 𝐾1 is positive. Clearly, dis-
arding 𝐾1 will not affect the decision result, and (12) can also be
ransformed into (16).

Clearly, (16) can be termed as the counting-based fusion statistic,
nd no a priori information about crossover probability and the local
171
ensor performance indices is needed at the fusion center. Note that, if
he decision threshold 𝜏1 in (11) is set to be 0, we arrive at a special
ase of the counting-based fusion rule, i.e, majority-based fusion rule.

Motivated by above facts, we propose an alternative heuristic statis-
ic from (12) in the form of an selective combining (SC) as follows:

4 ≜ 2𝑦𝑖 − 1,where 𝑖 = argmin 𝜀𝑖. (18)

.2. Decision fusion for small crossover probability

When the crossover probability is small for each hop, i.e., 𝜀𝑖 → 0,
8) can be modified as

(

𝑦𝑖
)

𝜀𝑖→0
= log

𝑃𝑑𝑖
𝑃𝑓𝑖

. (19)

Similarly, (9) can be given as

𝛬
(

𝑦𝑖
)

𝜀𝑖→0
= log

1 − 𝑃𝑑𝑖
1 − 𝑃𝑓𝑖

. (20)

Substituting (19) and (20) into (10), we have that

𝛬5≜
∑

𝑖∶𝑦𝑖=1
log

𝑃𝑑𝑖
𝑃𝑓𝑖

+
∑

𝑖∶𝑦𝑖=0
log

1 − 𝑃𝑑𝑖
1 − 𝑃𝑓𝑖

. (21)

As shown in (21), it does not require any knowledge of CSI but does
require 𝑃𝑑𝑖 and 𝑃𝑓𝑖 for all 𝑖. Correspondingly, significant performance
loss is predicted for this approach especially for moderate or large
crossover probability. We can term this as the Chair–Varshney fusion
statistic [10]. Note that, for Chair–Varshney fusion, it assumes that the
fusion center have reliable access to the local decision output.
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5.3. Decision fusion for large crossover probability

We start by modifying the optimal LLR-based decision fusion statis-
tic given in (8) as follows:

𝛬
(

𝑦𝑖
)

= log

(

1 − 𝑃𝑑𝑖
)

+ 𝑃𝑑𝑖
1−𝜀𝑖
𝜀𝑖

(

1 − 𝑃𝑓𝑖
)

+ 𝑃𝑓𝑖
1−𝜀𝑖
𝜀𝑖

= log

(

1 − 𝑃𝑑𝑖
)

+ 𝑃𝑑𝑖

1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

1− 1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

(

1 − 𝑃𝑓𝑖
)

+ 𝑃𝑓𝑖

1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

1− 1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

= log

(

1 − 𝑃𝑑𝑖
)

+ 𝑃𝑑𝑖 exp

(

log
1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

1− 1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

)

(

1 − 𝑃𝑓𝑖
)

+ 𝑃𝑓𝑖 exp

(

log
1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

1− 1
2

[

1+
∏𝐽

𝑗=1
(

1−2𝜀𝑖,𝑗
)

]

)

= log

(

1 − 𝑃𝑑𝑖
)

+ 𝑃𝑑𝑖 exp
(

2arc tanh
[

∏𝐽
𝑗=1 tanh

𝛿𝑖,𝑗
2

])

(

1 − 𝑃𝑓𝑖
)

+ 𝑃𝑓𝑖 exp
(

2arc tanh
[

∏𝐽
𝑗=1 tanh

𝛿𝑖,𝑗
2

])

= log

(

1 − 𝑃𝑑𝑖
)

+ 𝑃𝑑𝑖 exp
(

𝛷−1
{

∑𝐽
𝑗=1 𝛷

[

𝛿𝑖,𝑗
]

})

(

1 − 𝑃𝑓𝑖
)

+ 𝑃𝑓𝑖 exp
(

𝛷−1
{

∑𝐽
𝑗=1 𝛷

[

𝛿𝑖,𝑗
]

})

≈ log

(

1 − 𝑃𝑑𝑖
)

+𝑃𝑑𝑖 exp
(

min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
})

(

1 − 𝑃𝑓𝑖
)

+𝑃𝑓𝑖 exp
(

min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
}) .

(22)

When the crossover probability for each hop is large, we have that
𝑖,𝑗 → 0.5, and 𝛿𝑖,𝑗 → 0. Then, the exponential term in (22) can be
pproximated by using the first-order Taylor series expansion without
ndesired error. Therefore, (22) can be further simplified as

(

𝑦𝑖
)

≈ log

(

1 − 𝑃𝑑𝑖
)

+𝑃𝑑𝑖
(

1 + min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
})

(

1 − 𝑃𝑓𝑖
)

+𝑃𝑓𝑖
(

1 + min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
})

= log
1 + 𝑃𝑑𝑖 min1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

1 + 𝑃𝑓𝑖 min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
} .

(23)

Using the fact that, 𝑥 → 0, log (1 + 𝑥) ≈ 𝑥, and the above statistic can
be reduced to

𝛬
(

𝑦𝑖
)

≈
(

𝑃𝑑𝑖 − 𝑃𝑓𝑖
)

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

. (24)

Similarly, (9) can be simplified as

𝛬
(

𝑦𝑖 (𝑘)
)

= log
𝑃𝑑𝑖 +

(

1 − 𝑃𝑑𝑖
) 1−𝜀𝑖

𝜀𝑖

𝑃𝑓𝑖 +
(

1 − 𝑃𝑓𝑖
) 1−𝜀𝑖

𝜀𝑖

≈
𝑃𝑑𝑖 +

(

1 − 𝑃𝑑𝑖
) (

1 + min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
})

𝑃𝑓𝑖 +
(

1 − 𝑃𝑓𝑖
) (

1 + min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
})

= log
1 +

(

1 − 𝑃𝑑𝑖
)

min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
}

1 +
(

1 − 𝑃𝑓𝑖
)

min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
} ≈ −

(

𝑃𝑑𝑖 − 𝑃𝑓𝑖
)

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

.

(25)

Substituting (24) and (25) into (10), we have

𝛬6 ≜
∑

𝑖
𝛬
(

𝑦𝑖
)

=
∑

𝑖∶𝑦𝑖=1

(

𝑃𝑑𝑖 − 𝑃𝑓𝑖
)

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

−
∑

𝑖∶𝑦𝑖=0

(

𝑃𝑑𝑖 − 𝑃𝑓𝑖
)

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

=
∑

𝑖

[

(

𝑃𝑑𝑖 − 𝑃𝑓𝑖
) (

2𝑦𝑖 − 1
)

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

]

.

(26)

Here, we also develop a statistic in a form of a MRC, which however
the factor

(

𝑃𝑑𝑖 − 𝑃𝑓𝑖
)

min1≤𝑗≤𝐽
{

𝛿𝑖,𝑗
}

is now the ‘‘fading gain’’ associated
with the 𝑖th branch.
172
Further, if the local sensors are identical, that is, 𝑃𝑑𝑖 and 𝑃𝑓𝑖 do not
change with 𝑖, and (26) can be given as

𝛬6 =
(

𝑃𝑑 − 𝑃𝑓
)
∑

𝑖

[

{

2𝑦𝑖 − 1
}

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

]

= 𝐾2
∑

𝑖

[

(

2𝑦𝑖 − 1
)

min
1≤𝑗≤𝐽

{

𝛿𝑖,𝑗
}

]

,
(27)

where 𝐾2=
(

𝑃𝑑 − 𝑃𝑓
)

. When 𝑃𝑑 − 𝑃𝑓 > 0, discarding the constant term
𝐾2 will not affect the decision result, and (27) becomes

𝛬6 =
∑

𝑖
min
1≤𝑗≤𝐽

[

(2𝑦𝑖 − 1)
{

𝛿𝑖,𝑗
}]

. (28)

Clearly, if we directly borrow the idea from EGC, we have that

𝛬7 ≜
∑

𝑖
(2𝑦𝑖 − 1). (29)

6. Joint decision fusion and CSI estimation

6.1. Optimal joint decision fusion and CSI estimation

Considering that the cross probability 𝜀𝑖 of BSC obtained after the
equivalence of multi-hop relay transmission process is modeled as a
non random parameter, the basic principle of generalized likelihood
ratio test (GLRT) is considered to realize joint detection fusion and CSI
estimation. Here, we can have that

(

𝑢̂, 𝜀̂𝑖
)

= argmax
𝐻

{

max
𝜀𝑖

∏

𝑖
𝑃
(

𝐻 |

|

𝑦𝑖, 𝜀𝑖
)

}

. (30)

According to the certification process in Appendix:

∏

𝑖
𝑃
(

𝐻 |

|

𝑦𝑖, 𝜀𝑖
)

∝
∏

𝑖

{

∑

𝑥𝑖

𝑃
(

𝑥𝑖 |𝐻
)

𝑃
(

𝑦𝑖 ||𝑥𝑖, 𝜀𝑖
)

}

, (31)

where ∝ is used to indicate that the quantities are equal up to irrelevant
quantities that do not affect the maximization. The fusion decision
metric based on LLR can be obtained from (30) and (31):

𝛬 = log
∏

𝑖 𝑃
(

𝐻1
|

|

𝑦𝑖, 𝜀𝑖
)

∏

𝑖 𝑃
(

𝐻0
|

|

𝑦𝑖, 𝜀𝑖
) = log

∏

𝑖

{

∑

𝑥𝑖
𝑃
(

𝑥𝑖 ||𝐻1
)

𝑃
(

𝑦𝑖 ||𝑥𝑖, 𝜀𝑖
)

}

∏

𝑖

{

∑

𝑥𝑖
𝑃
(

𝑥𝑖 ||𝐻0
)

𝑃
(

𝑦𝑖 ||𝑥𝑖, 𝜀𝑖
)

}

=
∑

𝑖
log

∑

𝑥𝑖
𝑃
(

𝑥𝑖 ||𝐻1
)

𝑃
(

𝑦𝑖 ||𝑥𝑖, 𝜀𝑖
)

∑

𝑥𝑖
𝑃
(

𝑥𝑖 ||𝐻0
)

𝑃
(

𝑦𝑖 ||𝑥𝑖, 𝜀𝑖
) =

∑

𝑖
𝛬
(

𝑦𝑖, 𝜀𝑖
)

,

(32)

where

𝛬
(

𝑦𝑖, 𝜀𝑖
)

= log

∑

𝑥𝑖
𝑃
(

𝑥𝑖 ||𝐻1
)

𝑃
(

𝑦𝑖 ||𝑥𝑖, 𝜀𝑖
)

∑

𝑥𝑖
𝑃
(

𝑥𝑖 ||𝐻0
)

𝑃
(

𝑦𝑖 ||𝑥𝑖, 𝜀𝑖
) . (33)

The final joint fusion and estimation criteria are

𝜀𝑖 = argmax
𝜀𝑖

|𝛬| , (34)

̂ =
{

1, if
∑

𝑖 𝛬
(

𝑦𝑖, 𝜀̂𝑖
)

≥ 𝜏2
0, if

∑

𝑖 𝛬
(

𝑦𝑖, 𝜀̂𝑖
)

< 𝜏2.
(35)

ere, 𝜏2 is the decision threshold.

.2. Practical joint decision fusion and CSI estimation

As can be seen from (34), the optimal joint detection and estimation
cheme requires infinite dimensional search for the cross probability
𝑖. This is clearly extremely complex. Note that, the fusion detection
annot be implemented in the second stage if the cross probability 𝜀𝑖

is not be successfully estimated in the first stage. Here, we quantize
the continuous cross probability 𝜀𝑖 to reduce the implementation com-
plexity of the optimal scheme. For convenience of implementation, the
simplest uniform quantization is considered. In particular, when the
number of the quantization intervals is denoted as 𝑚, we have

𝜀 ∈
{ 𝑚 , 𝑚 = 1, 2,⋯ ,𝑀

}

. (36)
𝑖 2𝑀
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7. Performance analysis

7.1. Performance analysis for majority-based decision fusion when the cross
probability is large

The fusion detection error probability 𝑃𝑒 can be expressed as

𝑃𝑒 =𝑃
(

𝐻1
)

𝑃
(

𝑢̂ = 0 |
|

𝐻1
)

+ 𝑃
(

𝐻0
)

𝑃
(

𝑢̂ = 1 |
|

𝐻0
)

. (37)

Let 𝐾0 = |

|

𝑆0
|

|

, where 𝑆0 =
{

𝑦𝑖 ∶ 𝑦𝑖 = 0
}

, i.e., 𝐾0 is the cardinality
f 𝑆0. Similarly, let 𝐾1 = |

|

𝑆1
|

|

, where 𝑆1 =
{

𝑦𝑖 ∶ 𝑦𝑖 = 1
}

. With these
definitions, for the majority-based decision fusion, we have that (37)
can be modified as

𝑃
(

𝑢̂ = 0 |
|

𝐻1
)

= 𝑃
(

𝐾0 ≥ 𝐼𝜏 ||𝐻1
)

= 𝑃
(

𝐾1 < 𝐼𝜏 ||𝐻1
)

. (38)

In the above formula, both 𝐾0 and 𝐾1 obey binomial distribution. 𝐼𝜏
is the threshold, and its value ranges from 0 to I. For majority-based
decision fusion, we have that 𝐼𝜏 = 𝐼∕2. When 𝐻1 is true, we can get
{

𝐾0 ∼ 𝐵
(

𝐼, 𝑃01
)

𝐾1 ∼ 𝐵
(

𝐼, 𝑃11
)

,
(39)

where
{

𝑃01 = 𝑃
(

𝑦𝑖 = 0|𝐻1
)

= 𝑃𝑑𝑖𝜀𝑖 +
(

1 − 𝑃𝑑𝑖
) (

1 − 𝜀𝑖
)

𝑃11 = 𝑃
(

𝑦𝑖 = 1|𝐻1
)

= 𝑃𝑑𝑖
(

1 − 𝜀𝑖
)

+
(

1 − 𝑃𝑑𝑖
)

𝜀𝑖.
(40)

Then (38) can be rewritten as

𝑃
(

𝑢̂ = 0 |
|

𝐻1
)

=
𝐼
∑

𝑚=𝐼𝜏

(

𝐼
𝑚

)

𝑃𝑚
01
(

1 − 𝑃01
)𝐼−𝑚. (41)

According to Central limit theorem, when there are a large number of
routes, we can get

𝑃
(

𝑢̂ = 0 |
|

𝐻1
)

≈ 𝑄

⎛

⎜

⎜

⎜

⎝

𝐼𝜏 − 𝐼𝑃01
√

𝐼𝑃01
(

1 − 𝑃01
)

⎞

⎟

⎟

⎟

⎠

, (42)

here Q function is complementary cumulative distribution function.
imilarly, we have that
(

𝑢̂ = 1 |
|

𝐻0
)

= 𝑃
(

𝐾1 ≥ 𝐼𝜏 ||𝐻0
)

= 𝑃
(

𝐾0 < 𝐼𝜏 ||𝐻0
)

. (43)

hen 𝐻0 is true, we can get

𝐾0 ∼ 𝐵
(

𝐼, 𝑃00
)

𝐾1 ∼ 𝐵
(

𝐼, 𝑃10
)

,
(44)

here
𝑃00 = 𝑃

(

𝑦𝑖 = 0|𝐻0
)

= 𝑃𝑓𝑖𝜀𝑖 +
(

1 − 𝑃𝑓𝑖
) (

1 − 𝜀𝑖
)

𝑃10 = 𝑃
(

𝑦𝑖 = 1|𝐻0
)

= 𝑃𝑓𝑖
(

1 − 𝜀𝑖
)

+
(

1 − 𝑃𝑓𝑖
)

𝜀𝑖.
(45)

hen (43) can become

(

𝑢̂ = 1 |
|

𝐻0
)

=
𝐼
∑

𝑚=𝐼𝜏

(

𝐼
𝑚

)

𝑃𝑚
10
(

1 − 𝑃10
)𝐼−𝑚. (46)

When the number of route is extremely large, we have

(

𝑢̂ = 1 |
|

𝐻0
)

≈ 𝑄

⎛

⎜

⎜

⎜

⎝
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. (47)

Substituting (46) and (47) into (37), we have

𝑒 ≈
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𝑄
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⎜
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⎜
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√

𝐼𝑃10
(

1 − 𝑃10
)

⎞

⎟

⎟

⎟

⎠

. (48)

According to (48), it can be seen that the fusion detection error
probability 𝑃𝑒 is affected by such factors as the threshold 𝐼𝜏 , the number
of routes 𝐼 , 𝑃01 and 𝑃10. Since 𝐼𝜏 = 𝐼∕2, (48) can be further written as

𝑃𝑒 ≈
1
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Let 𝑡 =
√

𝐼(1∕2−𝑃01)
√

1∕4−(1∕2−𝑃01)2
, and the following analysis results can be

btained.
We first assume that the number of routes 𝐼 is set to be fixed.

hen 𝑃01 ≤ 1∕2, we can get 𝑡 ≥ 0. From the definition, we can see
hat with the increase of 𝑃01, 𝑡 is monotonically decreasing. According
o the properties of 𝑄 function, we can get that 𝑃𝑒 is monotonically
ncreasing. If the number of routes 𝐼 is increased, the fusion detection
rror probability will be reduced. Similarly, when 𝑃01 > 1∕2, we can
et 𝑡 < 0. With the increase of 𝑃01, 𝑡 is monotonically decreasing. In
ombination with the properties of 𝑄 function, we can also obtain that
𝑒 is monotonically increasing. However, if the number of routes is
ncreased, the fusion detection error probability will also be increased.

Let us make a summary. First, the fusion detection error probability
𝑒 increases monotonically with the increase of 𝜀𝑖. Secondly, by im-
roving the performance of local sensors, the detection performance
ill be improved. Finally, when 𝑃01 and 𝑃10 are less than or equal to
.5, increasing the number of routes will also improve the performance.
owever, when 𝑃01 and 𝑃10 are greater than 0.5, increasing the number
f routes will deteriorate the system performance.

.2. Performance analysis for majority-based decision fusion under ideal
ocal channel

When the channel from the source to the local sensor is ideal, we
ave that 𝑃𝑓𝑖 = 0 and 𝑃𝑑𝑖 = 1. In this context, (40) and (45) can be
espectively modified as

𝑃01 = 𝑃
(

𝑦𝑖 = 0|𝐻1
)

= 𝜀𝑖
𝑃11 = 𝑃

(

𝑦𝑖 = 1|𝐻1
)

=
(

1 − 𝜀𝑖
)

,
(50)

nd
𝑃00 = 𝑃

(

𝑦𝑖 = 0|𝐻0
)

=
(

1 − 𝜀𝑖
)

𝑃10 = 𝑃
(

𝑦𝑖 = 1|𝐻0
)

= 𝜀𝑖.
(51)

ith the above result, we have

𝑒 ≈ 𝑄
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⎜
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𝐼𝜀𝑖
(

1 − 𝜀𝑖
)

⎞

⎟

⎟

⎟

⎠

. (52)

Similarly, according to (52), we have that the fusion detection
error probability 𝑃𝑒 monotonically increases with the increase of the
cross probability. In particular, if the crossover probability 𝜀𝑖 is less
than 0.5, increasing the number of routes will improve the detection
performance. However, the detection performance will deteriorate by
increasing the number of routes when the cross probability is greater
than or equal to 0.5.

8. Numerical results and discussion

In this part, we analyze the fusion performance from many different
aspects, including bit error rate (BER), frame error rate (FER), and
complexity analysis. In the simulation, the crossover probability of
the relay channel varies from 0.001 to 0.3. We also study the system
performance of optimal LLR-based decision fusion and suboptimum
LLR-based decision fusion under dynamic channel conditions. Then the

joint decision fusion and CSI estimation are simulated, and the BER
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Table 1
Parameters used in simulations.

Parameter Detailed description

Channel condition BSC
Channel parameters Uniform reduction in interval (0.001, 0.3)
Information sequence length 504 bits
Noise condition Obey Wiener distribution
Number of sensors 1, 3, 5, 7, 9, 30, 50, 100
Number of hops 1, 2, 3, 4, 5
Quantized quantity M 5
Full complexity LLR (10)
Simplified LLR (16), (21), (29)
Channel conditions of different paths Obey the same crossover probability
Number of cycles Get at least 3000 frame errors
Fig. 5. BER performance of the optimal decision fusion. The number of route is set to
be 7, and the relay number is 1, 3, and 5.

performance, FER performance and CSI estimation performance are
discussed and analyzed.

We characterize the crossover probability for each hop as 𝜀𝑖,𝑗+1 =
𝜀𝑖,𝑗 + 𝛥𝑖,𝑗 , where 𝛥𝑖,𝑗 is an independent Gaussian random variable with
known variance 𝜎2𝑖,𝑗 and mean 0. For initial crossover probability 𝜀𝑖,1,
the uniform distribution in 0.001 to 0.3 is considered. The length of
each transmission data sequence is 504 bits. We collected at least
3000 frames of errors in each simulation process. Detailed simulation
parameters are shown in Table 1.

8.1. Performance of the optimal decision fusion

Figs. 5 and 6 shows the impact of relay number on performance
under the optimal LLR-based decision fusion, when the route number
is set to be 𝐼 = 7. As shown in Figs. 5 and 6, we can find that with
the decrease of cross probability, the BER and FER performance show
a threshold phenomenon. When the cross probability is greater than
the threshold, the graph changes slowly and when the cross probability
is less than the threshold, the BER and FER performance decrease
rapidly with the decrease of error transfer probability, especially in FER
performance. Under the same number of routes, the performance of the
system begins to decline with the increase of hops, when the crossover
probability is fixed to 0.008, the BER values of 1, 3 and 5 hops are
1.893 × 10−6, 2.911 × 10−5 and 1.313 × 10−4 respectively.

At the same time, we studied the impact of route number, as shown
in Figs. 7 and 8. We set the route number to be 1, 3, 5, 7 or 9 to
explore the routing gain of the optimal LLR-based Decision Fusion. It
is clearly observed that with the increase of the number of routes, the
performance improves significantly. We take the crossover probability

as 0.007, when there is only 1 route in the communication process, the
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Fig. 6. FER performance of the optimal decision fusion. The number of route is set to
be 7, and the relay number is 1, 3, and 5.

Fig. 7. BER performance of the optimal decision fusion. The number of route is set to
be 1, 3, 5, 7, or 9, and the relay number is 3.

FER value of the system is 6.489 × 10−1. However, when there are 9
routes, the FER value of the system is 8.348 × 10−4.

In addition, we simulate the impact of noise variance on system
performance. From Figs. 9 and 10, we can see that when the standard
deviation of noise is below 0.01, there is no obvious fading. As the value
increases, the channel condition of the system becomes very bad, so
unavoidable performance degradation occurs.

Figs. 11 and 12 show the impact on system performance when the
number of routes and relays changes simultaneously. We find that the
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Fig. 8. FER performance of the optimal decision fusion. The number of route is set to
be 1, 3, 5, 7, or 9, and the relay number is 3.

Fig. 9. BER performance for optimal decision fusion with (10). The route number is
7 and the relay number is 3.

Fig. 10. FER performance of different noise variance under optimal decision fusion
(10). the route number is 7 and the relay number is 3.
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Fig. 11. BER performance for optimal decision fusion with (10). The route number is
set to be 1, 3, 5, 7 and the relay number is set to be 1, 3, 5, 7.

Fig. 12. FER performance for optimal decision fusion with (10). The route number is
set to be 1, 3, 5, 7 and the relay number is set to be 1, 3, 5, 7.

BER and FER performance of the system is improved with the increase
of the number of routes and relays. This also shows that the gain
obtained by increasing the number of routes is higher than the fading
caused by relays.

8.2. Performance when the local channel is ideal

When the channel from the source to the sensor is ideal, that is, 𝑃𝑓𝑖
= 0, 𝑃𝑑𝑖 = 1. Firstly, we simulate the proposed decision fusion with
(16) and compared it with its theoretical performance in Fig. 13. The
number of routes is set to be 7 and the hops are 1, 3, 5. It is clear
that the overall trend of the actual simulation curve and the theoretical
curve is approximately the same, especially when the number of hops
increases. According to (14), the smallest 𝛿𝑖,𝑗 is usually obtained when
the crossover probability 𝜀𝑖,𝑗 of the relay is the largest. Therefore, the
coincidence between the performance simulation and the theoretical
analysis may have deviation when the crossing probability is small.

Figs. 14 to 17 show the simulation results of the decision fusion
with (12) , we can find that there is the same threshold phenomenon.
Different from the previous information source is not ideal, the curve
is smoother and not as steep as before, which also shows that the
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Fig. 13. Simulation result and theory analysis for majority-based fusion decision when
the local channel is ideal.

Fig. 14. BER performance of decision fusion with (12). The number of route is set to
e 7, and the relay number varies from 1 to 5.

Fig. 15. FER performance of decision fusion with (12). The number of route is set to
be 7, and the relay number varies from 1 to 5.
176
Fig. 16. BER performance of decision fusion with (12). The number of relay is set to
be 3, and the route number varies from 1 to 9.

Fig. 17. FER performance of decision fusion with (12). The number of relay is set to
be 3, and the route number varies from 1 to 9.

Fig. 18. BER performance of decision fusion with (16). The number of route is set to
be 7, and the relay number varies from 1 to 5.
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Fig. 19. FER performance of decision fusion with (16). The number of route is set to
be 7, and the relay number varies from 1 to 5.

Fig. 20. BER performance of decision fusion with (16). The number of relay is set to
e 3, and the route number varies from 1 to 9.

Fig. 21. FER performance of decision fusion with (16). The number of relay is set to
e 3, and the route number varies from 1 to 9.
177
Fig. 22. BER performance comparison of (12) and (16). The number of route is set to
be 7, and the relay number is 2 or 5.

Fig. 23. FER performance comparison of (12) and (16). The number of route is set to
be 7, and the relay number is 2 or 5.

Fig. 24. BER performance of different noise standard deviations under suboptimum
decision fusion. The route number is 7 and the relay number is 3.
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Fig. 25. FER performance of different noise standard deviations under suboptimum
decision fusion. The route number is 7 and the relay number is 3.

Fig. 26. BER performance of decision fusion with (21). The number of route is set to
e 7, and the relay number varies from 1 to 5.

erformance is improved as a whole. When the crossover probability
s fixed to 0.008, the BER values of 3 and 5 hops are 1.027 × 10−5 and
7.412×10−5 respectively under the 7 routes, these values are about half
of the previous values.

Secondly, we simulate the suboptimum decision fusion with (16),
the results are shown in Figs. 18 to 21. Since the suboptimum decision
fusion with (16) is the derivation from the optimal fusion in (12),
we want to understand the performance changes of the system while
reducing the complexity. Therefore, we choose to compare the two
methods when the number of routes is 7 and the number of relays is
2 and 5 respectively. According to the BER and FER in Figs. 22 and
23, we are surprised to find that they are roughly consistent, which
shows that while reducing the complexity, the system only depicts a
very small loss.

Finally, We study the effect of noise variance on system perfor-
mance, as shown in Figs. 24 and 25, We can find that when the
noise variance is small, it will not have a great impact on the system
performance.

8.3. Performance when the relay channel condition is good

In this part, we give the performance with (21) when the relay

channel condition is good. We set the crossover probability of each hop
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Fig. 27. FER performance of decision fusion with (21). The number of route is set to
be 7, and the relay number varies from 1 to 5.

Fig. 28. BER performance of decision fusion with (21). The number of relay is set to
be 3, and the route number varies from 1 to 9.

Fig. 29. FER performance of decision fusion with (21). The number of relay is set to
be 3, and the route number varies from 1 to 9.
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Fig. 30. Simulation result and theory analysis for majority-based fusion decision when
the relay channel condition is poor.

Fig. 31. BER performance of decision fusion with (27). The number of route is set to
e 7, and the relay number varies from 1 to 5.

o be 0.001. The false alarm probability 𝑃𝑓𝑖 and detection probability
𝑃𝑑𝑖 are used to characterize the performance of local sensors. In order
not to lose generality, we assume that both the false alarm probability
and the detection probability change uniformly. Then we observe the
detection performance of the system when the value of 𝑃𝑑𝑖 is changed.

As shown in Figs. 26 and 27, with the increase of the number of
elays, the BER and FER do not change significantly. We can see from
ig. 29 that when the number of routes is 3, 5 and 9, the FER values of
he system are 7.792 × 10−1, 1.476 × 10−1 and 1.987 × 10−3 respectively.

Here, the detection probability is fixed to 0.97 and the relay number is
set to be 3. It can be seen that the routing number has a very significant
impact on the performance of the system (see Fig. 28).

8.4. Performance when the relay channel condition is poor

Here, we analyze the performance of decision fusion in (27) and
(29) when the relay channel condition is poor. The former decision
requires channel status information, while the latter does not. We set
the crossover probability of each hop to be 0.3, which means that
when there are two hops, the crossover probability of the equivalent
BSC channel is 0.42, while when there are six hops, the channel
crossover probability is as high as 0.498, close to 0.5, and the channel
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Fig. 32. BER performance of decision fusion with (27). The number of relay is set to
be 3, and the route number varies from 1 to 9.

Fig. 33. BER performance of decision fusion with (29). The number of route is set to
be 7, and the relay number varies from 1 to 5.

Fig. 34. BER performance of decision fusion with (29). The number of relay is set to
be 3, and the route number varies from 1 to 9.
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Fig. 35. BER performance comparison of (27) and (29). The number of route is set to
e 7, and the relay number is 1 or 3.

Fig. 36. BER performance comparison of (10), (12) and (16). The number of route is
set to be 7, and the relay number is 3.

conditions are poor enough. We observe the performance by changing
the detection probability from local channel.

We depict the simulation performance with the theoretical analy-
sis in Fig. 30. We can see that the simulation results are almost in
agreement with the theoretical results, which gives strong support to
the simulation process.

From Figs. 31 to 34, we simulate the multi hop gain and rout-
ing gain of (27) and (29) respectively. Obviously, due to the poor
channel conditions, especially when the number of hops is large and
the crossover probability of the equivalent BSC channel is close to
0.5, the overall performance of the system is poor, and the bit error
rate of both methods is more than 0.1. However, with the increase of
detection probability from source to sensor and the number of routes,
the performance of the system is improved.

Decision with (27) and (29) are compared in Fig. 35. We can clearly
see that although (29) is obtained by (27) using more approximate
means, the performance is not greatly affected. When the detection
probability is very high, the difference between the BER curve values
of the two is about 7 × 10−4.
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Fig. 37. FER performance comparison of (10), (12) and (16). The number of route is
set to be 7, and the relay number is 3.

Fig. 38. BER performance comparison of (21), (27) and (29). The number of route is
set to be 7, and the relay number is 3.

Fig. 39. FER performance comparison of (21), (27) and (29). The number of route is
set to be 7, and the relay number is 3.
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Fig. 40. BER Performance of Joint Decision Fusion. The number of relay is set to be
, and the route number is 30, 50, 70 and 100.

Fig. 41. FER Performance of Joint Decision Fusion. The number of relay is set to be
2, and the route number is 30, 50, 70 and 100.

8.5. Fusion performance comparison

In Figs. 36 to 37, the first two curves represent the BER and FER
performance of decision fusion with (10) and (12) under the condition
of whether the local channel is ideal or not. The last two curves
represent the system performance of decision fusion with (12) and (16)
when the local channel is ideal. We can find that when the local sensor
channel is ideal, the performance is better than that of the nonideal
channel, and the performance of (12) and (16) is roughly consistent.

In Figs. 38 to 39, The red curve is the performance of (21) when
the relay channel condition is good, the blue and purple curves are the
performance of (27) and (29) when the relay channel condition is poor,
and the abscissa represents the detection probability of the local sensor.
We can find that when the state of the relay channel condition is good,
increasing the performance of the sensor can significantly improve the
performance of the whole system.

8.6. Performance for joint decision fusion and CSI estimation

In this part, we use practical joint decision fusion and CSI estimation
given in (32), (34) and (35) . According to (36), when 𝑚 = 5, we select
0.1, 0.2, 0.3 and 0.4 as the quantization value. In order to show better
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Fig. 42. The Performance of CSI Estimation. The number of relay is set to be 2, and
the route number is 30, 50, 70 and 100.

estimation and detection performance, we consider the scenario where
more routes are used in the communication process. The relay is set to
be 2 hops and the route number is 30, 50, 70 or 100. The crossover
probability of each hop is set to be 0.1 to 0.45.

In Figs. 40 to 41, we can see that in 30 sensors, when the crossover
probability is around 0.1, the BER is close to 1 × 10−6, while in 100
sensors, when the crossover probability is around 0.2, the ideal BER
and fer curves can be easily obtained. This is also an extension of the
previous routing gain.

Let us focus on Fig. 42, which perfectly presents the estimation
performance of (32) to (36). On the whole, each graph line can esti-
mate the corresponding crossover probability near the actual crossover
probability. However, it can be found in detail that when the number
of routes is low, a more accurate estimation can only be obtained near
the crossover probability, while when the number of routes is high, the
threshold of estimation becomes broader. For 30 routes, an estimated
value of 0.2 is obtained when the crossover probability is close to 0.18,
while for 100 routes, it is obtained in advance when the crossover
probability is 0.155, so that we can see that the estimated performance
improves considerably as the number of routes increases. However,
when the channel conditions are very poor, the estimation performance
is also greatly affected, such as when the crossover probability is close
to 0.5.

8.7. Complexity analysis

We compare the implementation complexity of various detection
schemes in Table 2. Note that, we have previously assumed that the
number of 1 in the local observation is denoted as 𝐾1, and the number
of 0 is denoted as 𝐾0 in Section 7. Obviously, the multiplication and
division of the approximated formula operation is greatly reduced,
making the system simple and easy to implement.

9. Conclusions and future work

Decision fusion for multi-route and multi-hop WSNs over the BSC is
developed. An explicit and exact solution for the optimum LLR-based
statistic is derived, which however perfect knowledge of the CSI for
each BSC and the local sensor performance indices is required at the FC.
The simple and robust suboptimum LLR-based fusion rules for two cases
are thus developed, wherein less or no a priori information is required.
More importantly, the joint decision fusion and CSI estimation is also
studied, and the optimal LLR-based scheme is proposed. However,

our result show that this optimal joint decision fusion and estimation
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Table 2
Comparison of the complexity of different schemes.

Decision fusion scheme (∙) ± (∙) (∙) (∙) or (∙)∕(∙) ln (∙) CSI 𝑃𝑑𝑖 and 𝑃𝑓𝑖

(10) (7 + 2𝐽 ) (𝐼 − 1) (𝐽 (𝐽 − 1) + 5) 𝐼 𝐼 yes yes
(16) 𝐼 (𝐼 − 1) 𝐼 0 no no
(21) 2𝐾0 +𝐾1 − 1 𝐼 I no yes
(29) 𝐼 (𝐼 − 1) 𝐼 0 no no
scheme is computationally practical. In order to simplify the fusion
detectors, we give a suboptimum scheme, wherein the continuous CSI
is quantized into discrete status. The fusion detection performance at
the FC is conducted through simulations.

There are several directions remaining for future research. First, we
pay all our attention towards decision fusion without channel coding.
The extension to coded case, wherein the local sensor is equipped
with an encoder, is worthy of further study. In this case, soft-decision
data can be transmitted in the relay node, and much decoding gain
is expected to be achieved at the FC. For convenience of analysis, we
assume that the local sensors observe independent noisy versions of
the source, and the extension to the correlation case is also worthy
of further study. Then, the energy consumption is also a challenging
problem, and the optimal number of hops minimizing the total energy
consumption of decision fusion for multi-route and multi-hop WSNs
is also a direction worth studying. Finally, artificial neural network
(ANN), which has been quickly developed in recent years, is also a
direction worth studying [30–33]. This follows from the fact that a
neural network type decoder is available and a large amount of training
data can be configured to simulate the channel transitions. In this
condition, there is also no need for estimation of the CSI.
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